TU Darmstadt / ULB / TUbiblio

Ligand‐Binding Mediated Gradual Ionic Transport in Nanopores

Varol, H. Samet ; Förster, Claire ; Andrieu‐Brunsen, Annette (2023)
Ligand‐Binding Mediated Gradual Ionic Transport in Nanopores.
In: Advanced Materials Interfaces, 2022, 10 (8)
doi: 10.26083/tuprints-00023696
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca²⁺ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca²⁺ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca²⁺ binding is observed in non‐functional pores and non‐reversible Ca²⁺ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µm concentrations, bind only divalent Ca²⁺ ions, but they are not selective to trivalent Al³⁺ ions.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Varol, H. Samet ; Förster, Claire ; Andrieu‐Brunsen, Annette
Art des Eintrags: Zweitveröffentlichung
Titel: Ligand‐Binding Mediated Gradual Ionic Transport in Nanopores
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Interfaces
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 8
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00023696
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23696
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Selective binding of metal ions to their receptors at the cell membranes is essential for immune reactions, signaling, and opening/closing of the ion channels. Such ligand‐binding‐based pore activities inspire scientists to build metal‐ion‐responsive mesoporous films that can interact with metal ions to tune the ionic nanopore transport. However, to apply these mesoporous films in novel sensing and separation applications, their ligand‐binding‐triggered ionic pore transport needs to be understood fundamentally toward programming the transport of both anions and cations simultaneously and gradually. Herein, it is shown how Ca²⁺ ion concentration and attachment to the different chemistry silica nanopores tunes finely the nanopore transport of both anions and cations, especially for phosphate‐containing polyelectrolyte (PMEP) functionalized mesopores. This biased ligand binding can gradually regulate the transport of anions and cations, whereas pores without polymers can gradually regulate only the anionic transport. Last, pore polymer functionality related to Ca²⁺ ion binding also diverts the pores’ adsorption/desorption (reversibility) response. Almost fully reversible Ca²⁺ binding is observed in non‐functional pores and non‐reversible Ca²⁺ binding at the PMEP‐modified pores. It is also demonstrated that non/functional pores, even at sub‐µm concentrations, bind only divalent Ca²⁺ ions, but they are not selective to trivalent Al³⁺ ions.

Freie Schlagworte: calcium binding, ion transport, mesoporous silica thin films, polyelectrolytes, sensing
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236962
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie
Hinterlegungsdatum: 12 Mai 2023 08:39
Letzte Änderung: 15 Mai 2023 05:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen