TU Darmstadt / ULB / TUbiblio

On the Deadline Miss Probability of Various Routing Policies in Wireless Sensor Networks

Sepulveda, Matias ; Oberli, Christian ; Becker, Benjamin ; Lieser, Patrick (2021)
On the Deadline Miss Probability of Various Routing Policies in Wireless Sensor Networks.
In: IEEE Access, 9
doi: 10.1109/ACCESS.2021.3099637
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Moving data across communication networks is often subject to deadline requirements. An example is early warning of disasters of natural origin, where sensor measurements at the disaster location must be communicated across a network within a predefined maximum delay in order for a consequent warning to be timely. In this work, we present a probabilistic model that allows for characterizing the delay experienced by sensor measurements in a wireless sensor network from source to sink depending upon the routing metric used for forwarding the data through the network. Using link delay probability distributions and the probabilities of following different paths to the sink, source-to-sink delay distributions are found for routing policies based on minimum hop-count, minimum mean delay and the Joint Latency (JLAT) protocol. An algorithm for calculating the end-to-end source to sink delay probability density function (PDF) is presented for the general case of networks that use routing tables whose input for routing decisions is the remaining time-to-deadline. The work provides a general tool for routing delay analysis, allowing for comparison of the deadline miss probability between different routing policies. An improved form of JLAT is proposed. Its deadline miss probability is found using the presented algorithm and compared to the ones determined for minimum hop-count, minimum mean delay and JLAT by means of an example.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Sepulveda, Matias ; Oberli, Christian ; Becker, Benjamin ; Lieser, Patrick
Art des Eintrags: Bibliographie
Titel: On the Deadline Miss Probability of Various Routing Policies in Wireless Sensor Networks
Sprache: Englisch
Publikationsjahr: 26 Juli 2021
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Access
Jahrgang/Volume einer Zeitschrift: 9
DOI: 10.1109/ACCESS.2021.3099637
Kurzbeschreibung (Abstract):

Moving data across communication networks is often subject to deadline requirements. An example is early warning of disasters of natural origin, where sensor measurements at the disaster location must be communicated across a network within a predefined maximum delay in order for a consequent warning to be timely. In this work, we present a probabilistic model that allows for characterizing the delay experienced by sensor measurements in a wireless sensor network from source to sink depending upon the routing metric used for forwarding the data through the network. Using link delay probability distributions and the probabilities of following different paths to the sink, source-to-sink delay distributions are found for routing policies based on minimum hop-count, minimum mean delay and the Joint Latency (JLAT) protocol. An algorithm for calculating the end-to-end source to sink delay probability density function (PDF) is presented for the general case of networks that use routing tables whose input for routing decisions is the remaining time-to-deadline. The work provides a general tool for routing delay analysis, allowing for comparison of the deadline miss probability between different routing policies. An improved form of JLAT is proposed. Its deadline miss probability is found using the presented algorithm and compared to the ones determined for minimum hop-count, minimum mean delay and JLAT by means of an example.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
Hinterlegungsdatum: 24 Apr 2023 13:31
Letzte Änderung: 26 Jul 2023 13:00
PPN: 509942415
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen