TU Darmstadt / ULB / TUbiblio

Frameworks for data-driven quality management in cyber-physical systems for manufacturing: A systematic review

Bretones Cassoli, Beatriz ; Jourdan, Nicolas ; Nguyen, Phu H. ; Sen, Sagar ; Garcia-Ceja, Enrique ; Metternich, Joachim (2022)
Frameworks for data-driven quality management in cyber-physical systems for manufacturing: A systematic review.
In: Procedia CIRP, 112
doi: 10.1016/j.procir.2022.09.062
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Recent advances in the manufacturing industry have enabled the deployment of Cyber-Physical Systems (CPS) at scale. By utilizing advanced analytics, data from production can be analyzed and used to monitor and improve the process and product quality. Many frameworks for implementing CPS have been developed to structure the relationship between the digital and the physical worlds. However, there is no systematic review of the existing frameworks related to quality management in manufacturing CPS. Thus, our study aims at determining and comparing the existing frameworks. The systematic review yielded 38 frameworks analyzed regarding their characteristics, use of data science and Machine Learning (ML), and shortcomings and open research issues. The identified issues mainly relate to limitations in cross-industry/cross-process applicability, the use of ML, big data handling, and data security.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Bretones Cassoli, Beatriz ; Jourdan, Nicolas ; Nguyen, Phu H. ; Sen, Sagar ; Garcia-Ceja, Enrique ; Metternich, Joachim
Art des Eintrags: Bibliographie
Titel: Frameworks for data-driven quality management in cyber-physical systems for manufacturing: A systematic review
Sprache: Englisch
Publikationsjahr: 2022
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 112
DOI: 10.1016/j.procir.2022.09.062
Kurzbeschreibung (Abstract):

Recent advances in the manufacturing industry have enabled the deployment of Cyber-Physical Systems (CPS) at scale. By utilizing advanced analytics, data from production can be analyzed and used to monitor and improve the process and product quality. Many frameworks for implementing CPS have been developed to structure the relationship between the digital and the physical worlds. However, there is no systematic review of the existing frameworks related to quality management in manufacturing CPS. Thus, our study aims at determining and comparing the existing frameworks. The systematic review yielded 38 frameworks analyzed regarding their characteristics, use of data science and Machine Learning (ML), and shortcomings and open research issues. The identified issues mainly relate to limitations in cross-industry/cross-process applicability, the use of ML, big data handling, and data security.

Freie Schlagworte: Artificial Intelligence (AI), Cyber-Physical Systems (CPS), Framework, Quality Management, Systematic Literature Review
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > CiP Center für industrielle Produktivität
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
Hinterlegungsdatum: 17 Apr 2023 06:56
Letzte Änderung: 17 Apr 2023 08:21
PPN: 507014243
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen