TU Darmstadt / ULB / TUbiblio

Dislocation-toughened ceramics

Porz, Lukas ; Klomp, Arne Jan ; Fang, Xufei ; Li, Ning ; Yildirim, Can ; Detlefs, Carsten ; Bruder, Enrico ; Höfling, Marion ; Rheinheimer, Wolfgang ; Patterson, Eric A. ; Gao, Peng ; Durst, Karsten ; Nakamura, Atsutomo ; Albe, Karsten ; Simons, Hugh ; Rödel, Jürgen (2023)
Dislocation-toughened ceramics.
In: Materials Horizons, 2021, 8 (5)
doi: 10.26083/tuprints-00023191
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Functional and structural ceramics have become irreplaceable in countless high-tech applications. However, their inherent brittleness tremendously limits the application range and, despite extensive research efforts, particularly short cracks are hard to combat. While local plasticity carried by mobile dislocations allows desirable toughness in metals, high bond strength is widely believed to hinder dislocation-based toughening of ceramics. Here, we demonstrate the possibility to induce and engineer a dislocation microstructure in ceramics that improves the crack tip toughness even though such toughening does not occur naturally after conventional processing. With modern microscopy and simulation techniques, we reveal key ingredients for successful engineering of dislocation-based toughness at ambient temperature. For many ceramics a dislocation-based plastic zone is not impossible due to some intrinsic property (e.g. bond strength) but limited by an engineerable quantity, i.e. the dislocation density. The impact of dislocation density is demonstrated in a surface near region and suggested to be transferrable to bulk ceramics. Unexpected potential in improving mechanical performance of ceramics could be realized with novel synthesis strategies.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Porz, Lukas ; Klomp, Arne Jan ; Fang, Xufei ; Li, Ning ; Yildirim, Can ; Detlefs, Carsten ; Bruder, Enrico ; Höfling, Marion ; Rheinheimer, Wolfgang ; Patterson, Eric A. ; Gao, Peng ; Durst, Karsten ; Nakamura, Atsutomo ; Albe, Karsten ; Simons, Hugh ; Rödel, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Dislocation-toughened ceramics
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Royal Society of Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials Horizons
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 5
DOI: 10.26083/tuprints-00023191
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23191
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Functional and structural ceramics have become irreplaceable in countless high-tech applications. However, their inherent brittleness tremendously limits the application range and, despite extensive research efforts, particularly short cracks are hard to combat. While local plasticity carried by mobile dislocations allows desirable toughness in metals, high bond strength is widely believed to hinder dislocation-based toughening of ceramics. Here, we demonstrate the possibility to induce and engineer a dislocation microstructure in ceramics that improves the crack tip toughness even though such toughening does not occur naturally after conventional processing. With modern microscopy and simulation techniques, we reveal key ingredients for successful engineering of dislocation-based toughness at ambient temperature. For many ceramics a dislocation-based plastic zone is not impossible due to some intrinsic property (e.g. bond strength) but limited by an engineerable quantity, i.e. the dislocation density. The impact of dislocation density is demonstrated in a surface near region and suggested to be transferrable to bulk ceramics. Unexpected potential in improving mechanical performance of ceramics could be realized with novel synthesis strategies.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-231919
Zusätzliche Informationen:

Supplementary information: https://t1p.de/jur2y

Supplementary movie 1: https://t1p.de/qb2r1

Supplementary movie 2: https://t1p.de/g8abc

Supplementary movie 3: https://t1p.de/608mn

Supplementary movie 4: https://t1p.de/s2eno

Supplementary movie 5: https://t1p.de/5r441

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 28 Feb 2023 10:13
Letzte Änderung: 01 Mär 2023 06:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen