TU Darmstadt / ULB / TUbiblio

Analyzing the Positive Sentiment Towards the Term “Queer’’ in Virginia Woolf through a Computational Approach and Close Reading

Shin, Heejoung (2023)
Analyzing the Positive Sentiment Towards the Term “Queer’’ in Virginia Woolf through a Computational Approach and Close Reading.
In: Journal of Computational Literary Studies, 2022, 1 (1)
doi: 10.26083/tuprints-00023262
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

This article validates the thesis that Virginia Woolf’s usage of the term “queer’’ is positive, and that the author is more progressive with her idea of things conceived as “queer’’ in the era characterized as literary Modernism and in English fiction as a whole from 1850s to 1990s. Using Word2Vec, a word embedding model, I locate the top 100 words semantically closest to “queer’’ in Woolf’s works and in the works of other modernist authors, James Joyce, F. Scott Fitzgerald, D. H. Lawrence, Gertrude Stein, and Katherine Mansfield. I then measure the net positivity of each author’s list and compare Woolf’s with the individual authors’, and then with words closest to “queer’’ in English fiction from 1850 to 2000. In demonstrating the usefulness of applying word embedding models in literary criticism, a field that has traditionally primarily relied on interpretation, this article aims to serve as a case study of how a computational approach can benefit close reading.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Shin, Heejoung
Art des Eintrags: Zweitveröffentlichung
Titel: Analyzing the Positive Sentiment Towards the Term “Queer’’ in Virginia Woolf through a Computational Approach and Close Reading
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Universitäts- und Landesbibliothek Darmstadt
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Computational Literary Studies
Jahrgang/Volume einer Zeitschrift: 1
(Heft-)Nummer: 1
Kollation: 26 Seiten
DOI: 10.26083/tuprints-00023262
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23262
Zugehörige Links:
Herkunft: Zweitveröffentlichung von TUjournals
Kurzbeschreibung (Abstract):

This article validates the thesis that Virginia Woolf’s usage of the term “queer’’ is positive, and that the author is more progressive with her idea of things conceived as “queer’’ in the era characterized as literary Modernism and in English fiction as a whole from 1850s to 1990s. Using Word2Vec, a word embedding model, I locate the top 100 words semantically closest to “queer’’ in Woolf’s works and in the works of other modernist authors, James Joyce, F. Scott Fitzgerald, D. H. Lawrence, Gertrude Stein, and Katherine Mansfield. I then measure the net positivity of each author’s list and compare Woolf’s with the individual authors’, and then with words closest to “queer’’ in English fiction from 1850 to 2000. In demonstrating the usefulness of applying word embedding models in literary criticism, a field that has traditionally primarily relied on interpretation, this article aims to serve as a case study of how a computational approach can benefit close reading.

Freie Schlagworte: Virginia Woolf, queer, modernism, sentiment analysis, word embedding model, Word2Vec
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-232627
Zusätzliche Informationen:

Urspr. Konferenzveröffentlichung/Originally conference publication: 1st Annual Conference of Computational Literary Studies, 01.-02.06.2022, Darmstadt, Germany

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 800 Literatur > 800 Literatur, Rhetorik, Literaturwissenschaft
Fachbereich(e)/-gebiet(e): 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft > Digital Philology - Neuere deutsche Literaturwissenschaft
02 Fachbereich Gesellschafts- und Geschichtswissenschaften
02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft
Hinterlegungsdatum: 21 Feb 2023 10:36
Letzte Änderung: 27 Feb 2023 12:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen