Schröter, Julian ; Du, Keli (2023)
Validating Topic Modeling as a Method of Analyzing Sujet and Theme.
In: Journal of Computational Literary Studies, 2022, 1 (1)
doi: 10.26083/tuprints-00023256
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In Computational Literary Studies (CLS), several procedures for thematic analysis have been adapted from NLP and Computer Science. Among these procedures, topic modeling is the most prominent and popular technique. We maintain, however, that this procedure is used only in the context of exploration up to date, but not in the context of justification. When we seek to prove assumptions concerning the correlation between genres, methods of computational text analysis have to be set up in research environments of justification, i.e. in environments of hypothesis testing. We provide a holistic model of validation and conceptual disambiguation of the notion of aboutness as sujet, fabula, and theme, and discuss essential methodological requirements for hypothesis-based analysis. As we maintain that validation has to be performed for individual tasks respectively, we shall perform empirical validation of topic modeling based on a new corpus of German novellas and comprehensive annotations and draw hypothetical generalizations on the applicability of topic modeling for analyzing aboutness in the domain of narrative fiction.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Schröter, Julian ; Du, Keli |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Validating Topic Modeling as a Method of Analyzing Sujet and Theme |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | Universitäts- und Landesbibliothek Darmstadt |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Computational Literary Studies |
Jahrgang/Volume einer Zeitschrift: | 1 |
(Heft-)Nummer: | 1 |
Kollation: | 20 Seiten |
DOI: | 10.26083/tuprints-00023256 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/23256 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung von TUjournals |
Kurzbeschreibung (Abstract): | In Computational Literary Studies (CLS), several procedures for thematic analysis have been adapted from NLP and Computer Science. Among these procedures, topic modeling is the most prominent and popular technique. We maintain, however, that this procedure is used only in the context of exploration up to date, but not in the context of justification. When we seek to prove assumptions concerning the correlation between genres, methods of computational text analysis have to be set up in research environments of justification, i.e. in environments of hypothesis testing. We provide a holistic model of validation and conceptual disambiguation of the notion of aboutness as sujet, fabula, and theme, and discuss essential methodological requirements for hypothesis-based analysis. As we maintain that validation has to be performed for individual tasks respectively, we shall perform empirical validation of topic modeling based on a new corpus of German novellas and comprehensive annotations and draw hypothetical generalizations on the applicability of topic modeling for analyzing aboutness in the domain of narrative fiction. |
Freie Schlagworte: | sujet, theme, validation, topic modeling, content |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-232568 |
Zusätzliche Informationen: | Urspr. Konferenzveröffentlichung/Originally conference publication: 1st Annual Conference of Computational Literary Studies, 01.-02.06.2022, Darmstadt, Germany |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 800 Literatur > 800 Literatur, Rhetorik, Literaturwissenschaft |
Fachbereich(e)/-gebiet(e): | 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft > Digital Philology - Neuere deutsche Literaturwissenschaft 02 Fachbereich Gesellschafts- und Geschichtswissenschaften 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft |
Hinterlegungsdatum: | 21 Feb 2023 10:23 |
Letzte Änderung: | 27 Feb 2023 12:46 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Validating Topic Modeling as a Method of Analyzing Sujet and Theme. (deposited 21 Feb 2023 10:23) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |