TU Darmstadt / ULB / TUbiblio

Evaluation of Measures of Distinctiveness. Classification of Literary Texts on the Basis of Distinctive Words

Du, Keli ; Dudar, Julia ; Schöch, Christof (2023)
Evaluation of Measures of Distinctiveness. Classification of Literary Texts on the Basis of Distinctive Words.
In: Journal of Computational Literary Studies, 2022, 1 (1)
doi: 10.26083/tuprints-00023252
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

This paper concerns an empirical evaluation of nine different measures of distinctiveness or ‘keyness’ in the context of Computational Literary Studies. We use nine different sets of literary texts (specifically, novels) written in seven different languages as a basis for this evaluation. The evaluation is performed as a downstream classification task, where segments of the novels need to be classified by subgenre or period of first publication. The classifier receives different numbers of features identified using different measures of distinctiveness. The main contribution of our paper is that we can show that across a wide variety of parameters, but especially when only a small number of features is used, (more recent) dispersion-based measures very often outperform other (more established) frequency-based measures by significant margins. Our findings support an emerging trend to consider dispersion as an important property of words in addition to frequency.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Du, Keli ; Dudar, Julia ; Schöch, Christof
Art des Eintrags: Zweitveröffentlichung
Titel: Evaluation of Measures of Distinctiveness. Classification of Literary Texts on the Basis of Distinctive Words
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Universitäts- und Landesbibliothek Darmstadt
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Computational Literary Studies
Jahrgang/Volume einer Zeitschrift: 1
(Heft-)Nummer: 1
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00023252
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23252
Zugehörige Links:
Herkunft: Zweitveröffentlichung von TUjournals
Kurzbeschreibung (Abstract):

This paper concerns an empirical evaluation of nine different measures of distinctiveness or ‘keyness’ in the context of Computational Literary Studies. We use nine different sets of literary texts (specifically, novels) written in seven different languages as a basis for this evaluation. The evaluation is performed as a downstream classification task, where segments of the novels need to be classified by subgenre or period of first publication. The classifier receives different numbers of features identified using different measures of distinctiveness. The main contribution of our paper is that we can show that across a wide variety of parameters, but especially when only a small number of features is used, (more recent) dispersion-based measures very often outperform other (more established) frequency-based measures by significant margins. Our findings support an emerging trend to consider dispersion as an important property of words in addition to frequency.

Freie Schlagworte: keyness, evaluation, literary texts, distinctiveness
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-232529
Zusätzliche Informationen:

Urspr. Konferenzveröffentlichung/Originally conference publication: 1st Annual Conference of Computational Literary Studies, 01.-02.06.2022, Darmstadt, Germany

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 800 Literatur > 800 Literatur, Rhetorik, Literaturwissenschaft
Fachbereich(e)/-gebiet(e): 02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft > Digital Philology - Neuere deutsche Literaturwissenschaft
02 Fachbereich Gesellschafts- und Geschichtswissenschaften
02 Fachbereich Gesellschafts- und Geschichtswissenschaften > Institut für Sprach- und Literaturwissenschaft
Hinterlegungsdatum: 21 Feb 2023 10:19
Letzte Änderung: 27 Feb 2023 12:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen