TU Darmstadt / ULB / TUbiblio

Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation

González, Camila ; Gotkowski, Karol ; Fuchs, Moritz ; Bucher, Andreas ; Dadras, Armin ; Fischbach, Ricarda ; Kaltenborn, Isabel Jasmin ; Mukhopadhyay, Anirban (2022)
Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation.
In: Medical Image Analysis, 82
doi: 10.1016/j.media.2022.102596
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scanscan potentially ease the burden of radiologists during times of high resource utilisation. However, deep learningmodels are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. Wepropose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space andseamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pretrainedmodels with clinically relevant uncertainty quantification. We validate our method across four chest CTdistribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampusand the prostate. Our results show that the proposed method effectively detects far- and near-OOD samplesacross all explored scenarios.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): González, Camila ; Gotkowski, Karol ; Fuchs, Moritz ; Bucher, Andreas ; Dadras, Armin ; Fischbach, Ricarda ; Kaltenborn, Isabel Jasmin ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation
Sprache: Englisch
Publikationsjahr: November 2022
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Medical Image Analysis
Jahrgang/Volume einer Zeitschrift: 82
DOI: 10.1016/j.media.2022.102596
Kurzbeschreibung (Abstract):

Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scanscan potentially ease the burden of radiologists during times of high resource utilisation. However, deep learningmodels are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. Wepropose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space andseamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pretrainedmodels with clinically relevant uncertainty quantification. We validate our method across four chest CTdistribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampusand the prostate. Our results show that the proposed method effectively detects far- and near-OOD samplesacross all explored scenarios.

Freie Schlagworte: Out-of-distribution detection, Uncertainty estimation, Distribution shift
Zusätzliche Informationen:

Art.No.: 102596

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 17 Feb 2023 07:57
Letzte Änderung: 10 Jul 2023 15:16
PPN: 509471323
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen