TU Darmstadt / ULB / TUbiblio

Simulating the Photon Statistics of Gaussian States Employing Automatic Differentiation from PyTorch

Fitzke, Erik ; Niederschuh, Florian ; Walther, Thomas (2023)
Simulating the Photon Statistics of Gaussian States Employing Automatic Differentiation from PyTorch.
doi: 10.26083/tuprints-00023061
Report, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Many common photonic states are so-called Gaussian states. In a recent manuscript, we have shown how the photon statistics of such states can be obtained by constructing and differentiating generating functions. In this technical report, we demonstrate the straightforward application of the framework PyTorch to compute the required multivariate higher-order derivatives by automatic differentiation. Its implementation requires only a few lines of Python code corroborating the strength of our approach based on generating functions for the computation of photon statistics.

Typ des Eintrags: Report
Erschienen: 2023
Autor(en): Fitzke, Erik ; Niederschuh, Florian ; Walther, Thomas
Art des Eintrags: Erstveröffentlichung
Titel: Simulating the Photon Statistics of Gaussian States Employing Automatic Differentiation from PyTorch
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Kollation: 13 Seiten
DOI: 10.26083/tuprints-00023061
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23061
Kurzbeschreibung (Abstract):

Many common photonic states are so-called Gaussian states. In a recent manuscript, we have shown how the photon statistics of such states can be obtained by constructing and differentiating generating functions. In this technical report, we demonstrate the straightforward application of the framework PyTorch to compute the required multivariate higher-order derivatives by automatic differentiation. Its implementation requires only a few lines of Python code corroborating the strength of our approach based on generating functions for the computation of photon statistics.

Freie Schlagworte: PyTorch, Gaussian boson sampling, Gaussian states, probability generating function, photon statistics, quantum key distribution, quantum simulation, automatic differentiation
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-230615
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Laser und Quantenoptik
Hinterlegungsdatum: 09 Jan 2023 13:11
Letzte Änderung: 10 Jan 2023 08:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen