TU Darmstadt / ULB / TUbiblio

Physics-driven digital twin for laser powder bed fusion on GPUs

Ferreira, Stephanie ; Klein, Benjamin ; Stork, André ; Fellner, Dieter W. (2022)
Physics-driven digital twin for laser powder bed fusion on GPUs.
8th European Congress on Computational Methods in Applied Sciences and Engineering. Oslo, Norway (05.06.2022-09.06.2022)
doi: 10.23967/eccomas.2022.221
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Metal Additive Manufacturing (AM) processes such as Laser Powder Bed Fusion (LPBF) suffer from part distortion due to the localized melting and resolidification of the metal powder, which introduces stresses and strains. Despite becoming more and more important as a manufacturing process, options for simulating the printing process to predict the distortions are limited, especially because existing solutions often require very long computation times. In this work, we present the results of an implementation of the inherent strain method on graphics processing units (GPUs) that exploits the massive parallelism of the many GPU cores to speed up the simulations considerably compared to CPU-based implementations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Ferreira, Stephanie ; Klein, Benjamin ; Stork, André ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Physics-driven digital twin for laser powder bed fusion on GPUs
Sprache: Englisch
Publikationsjahr: 24 November 2022
Verlag: SCIPEDIA
Buchtitel: ECCOMAS Congress 2022 - 8th European Congress on Computational Methods in Applied Sciences and Engineering
Veranstaltungstitel: 8th European Congress on Computational Methods in Applied Sciences and Engineering
Veranstaltungsort: Oslo, Norway
Veranstaltungsdatum: 05.06.2022-09.06.2022
DOI: 10.23967/eccomas.2022.221
Kurzbeschreibung (Abstract):

Metal Additive Manufacturing (AM) processes such as Laser Powder Bed Fusion (LPBF) suffer from part distortion due to the localized melting and resolidification of the metal powder, which introduces stresses and strains. Despite becoming more and more important as a manufacturing process, options for simulating the printing process to predict the distortions are limited, especially because existing solutions often require very long computation times. In this work, we present the results of an implementation of the inherent strain method on graphics processing units (GPUs) that exploits the massive parallelism of the many GPU cores to speed up the simulations considerably compared to CPU-based implementations.

Freie Schlagworte: Physically based simulation, General Purpose Computation on Graphics Processing Unit (GPGPU), 3D Printing
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 06 Jan 2023 10:12
Letzte Änderung: 11 Jan 2023 09:01
PPN: 503547239
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen