TU Darmstadt / ULB / TUbiblio

Fast Fitting of the Dynamic Memdiode Model to the Conduction Characteristics of RRAM Devices Using Convolutional Neural Networks

Aguirre, Fernando Leonel ; Piros, Eszter ; Kaiser, Nico ; Vogel, Tobias ; Petzold, Stephan ; Gehrunger, Jonas ; Oster, Timo ; Hochberger, Christian ; Suñé, Jordi ; Alff, Lambert ; Miranda, Enrique (2022)
Fast Fitting of the Dynamic Memdiode Model to the Conduction Characteristics of RRAM Devices Using Convolutional Neural Networks.
In: Micromachines, 2022, 13 (11)
doi: 10.26083/tuprints-00022979
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper, the use of Artificial Neural Networks (ANNs) in the form of Convolutional Neural Networks (AlexNET) for the fast and energy-efficient fitting of the Dynamic Memdiode Model (DMM) to the conduction characteristics of bipolar-type resistive switching (RS) devices is investigated. Despite an initial computationally intensive training phase the ANNs allow obtaining a mapping between the experimental Current-Voltage (I-V) curve and the corresponding DMM parameters without incurring a costly iterative process as typically considered in error minimization-based optimization algorithms. In order to demonstrate the fitting capabilities of the proposed approach, a complete set of I-Vs obtained from Y₂O₃-based RRAM devices, fabricated with different oxidation conditions and measured with different current compliances, is considered. In this way, in addition to the intrinsic RS variability, extrinsic variation is achieved by means of external factors (oxygen content and damage control during the set process). We show that the reported method provides a significant reduction of the fitting time (one order of magnitude), especially in the case of large data sets. This issue is crucial when the extraction of the model parameters and their statistical characterization are required.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Aguirre, Fernando Leonel ; Piros, Eszter ; Kaiser, Nico ; Vogel, Tobias ; Petzold, Stephan ; Gehrunger, Jonas ; Oster, Timo ; Hochberger, Christian ; Suñé, Jordi ; Alff, Lambert ; Miranda, Enrique
Art des Eintrags: Zweitveröffentlichung
Titel: Fast Fitting of the Dynamic Memdiode Model to the Conduction Characteristics of RRAM Devices Using Convolutional Neural Networks
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Micromachines
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 11
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00022979
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22979
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In this paper, the use of Artificial Neural Networks (ANNs) in the form of Convolutional Neural Networks (AlexNET) for the fast and energy-efficient fitting of the Dynamic Memdiode Model (DMM) to the conduction characteristics of bipolar-type resistive switching (RS) devices is investigated. Despite an initial computationally intensive training phase the ANNs allow obtaining a mapping between the experimental Current-Voltage (I-V) curve and the corresponding DMM parameters without incurring a costly iterative process as typically considered in error minimization-based optimization algorithms. In order to demonstrate the fitting capabilities of the proposed approach, a complete set of I-Vs obtained from Y₂O₃-based RRAM devices, fabricated with different oxidation conditions and measured with different current compliances, is considered. In this way, in addition to the intrinsic RS variability, extrinsic variation is achieved by means of external factors (oxygen content and damage control during the set process). We show that the reported method provides a significant reduction of the fitting time (one order of magnitude), especially in the case of large data sets. This issue is crucial when the extraction of the model parameters and their statistical characterization are required.

Freie Schlagworte: RRAM, neural networks, curve fitting, dynamic memdiode, memristor
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-229795
Zusätzliche Informationen:

This article belongs to the Special Issue New Advances in Ionic-Drift Resistive Switching Memory and Neuromorphic Applications, Volume II

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Integrierte Elektronische Systeme (IES)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Rechnersysteme
Hinterlegungsdatum: 19 Dez 2022 12:28
Letzte Änderung: 20 Dez 2022 13:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen