Buelow, Max von ; Tausch, Reimar ; Schurig, Martin ; Knauthe, Volker ; Wirth, Tristan ; Guthe, Stefan ; Santos, Pedro ; Fellner, Dieter W. (2022)
Depth-of-Field Segmentation for Near-lossless Image Compression and 3D Reconstruction.
In: Journal on Computing and Cultural Heritage, 15 (3)
doi: 10.1145/3500924
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Over the years, photometric 3d reconstruction gained increasing importance in several disciplines, especially in cultural heritage preservation. While increasing sizes of images and datasets enhanced the overall reconstruction results, requirements in storage got immense. Additionally, unsharp areas in the background have a negative influence on 3d reconstructions algorithms. Handling the sharp foreground differently from the background simultaneously helps to reduce storage size requirements and improves 3d reconstruction results. In this paper, we examine regions outside the Depth of Field (DoF) and eliminate their inaccurate information to 3d reconstructions. We extract DoF maps from the images and use them to handle the foreground and background with different compression backends making sure that the actual object is compressed losslessly. Our algorithm achieves compression rates between 1:8 and 1:30 depending on the artifact and DoF size and improves the 3d reconstruction.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Buelow, Max von ; Tausch, Reimar ; Schurig, Martin ; Knauthe, Volker ; Wirth, Tristan ; Guthe, Stefan ; Santos, Pedro ; Fellner, Dieter W. |
Art des Eintrags: | Bibliographie |
Titel: | Depth-of-Field Segmentation for Near-lossless Image Compression and 3D Reconstruction |
Sprache: | Englisch |
Publikationsjahr: | 16 September 2022 |
Verlag: | ACM |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal on Computing and Cultural Heritage |
Jahrgang/Volume einer Zeitschrift: | 15 |
(Heft-)Nummer: | 3 |
DOI: | 10.1145/3500924 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Over the years, photometric 3d reconstruction gained increasing importance in several disciplines, especially in cultural heritage preservation. While increasing sizes of images and datasets enhanced the overall reconstruction results, requirements in storage got immense. Additionally, unsharp areas in the background have a negative influence on 3d reconstructions algorithms. Handling the sharp foreground differently from the background simultaneously helps to reduce storage size requirements and improves 3d reconstruction results. In this paper, we examine regions outside the Depth of Field (DoF) and eliminate their inaccurate information to 3d reconstructions. We extract DoF maps from the images and use them to handle the foreground and background with different compression backends making sure that the actual object is compressed losslessly. Our algorithm achieves compression rates between 1:8 and 1:30 depending on the artifact and DoF size and improves the 3d reconstruction. |
Freie Schlagworte: | 3D Reconstruction, Cultural heritage, Image segmentation, Image compression |
Zusätzliche Informationen: | Art.No.: 49; Erstveröffentlichung |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 09 Dez 2022 08:44 |
Letzte Änderung: | 03 Jul 2024 02:58 |
PPN: | 506554732 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Depth of Field Segmentation for Near-Lossless Image Compression and 3D Reconstruction. (deposited 06 Mai 2022 10:22)
- Depth-of-Field Segmentation for Near-lossless Image Compression and 3D Reconstruction. (deposited 09 Dez 2022 08:44) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |