Lang, Sandra (2022)
A Geometric Approach to the Projective Tensor Norm.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00020331
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
The main focus of this thesis is on the projective norm on finite-dimensional real or complex tensor products. There are various mathematical subjects with relations to the projective norm. For instance, it appears in the context of operator algebras or in quantum physics.
The projective norm on multipartite tensor products is considered to be less accessible. So we use a method from convex algebraic geometry to approximate the projective unit ball by convex supersets, so-called theta bodies. For real multipartite tensor products we obtain theta bodies which are close to the projective unit ball, leading to a generalisation of the Schmidt decomposition. In a second step the method is applied to complex tensor products, in a third step to separable states.
In a more general context, the projective norm can be related to binomial ideals, especially to so-called Hibi relations. In this respect, we also focus on a generalisation of the projective unit ball, here called Hibi body, and its theta bodies. It turns out that many statements also hold in this general context.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2022 | ||||
Autor(en): | Lang, Sandra | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | A Geometric Approach to the Projective Tensor Norm | ||||
Sprache: | Englisch | ||||
Referenten: | Kümmerer, Prof. Dr. Burkhard ; Maassen, Prof. Dr. Hans | ||||
Publikationsjahr: | 2022 | ||||
Ort: | Darmstadt | ||||
Kollation: | xxv, 323 Seiten | ||||
Datum der mündlichen Prüfung: | 3 Mai 2022 | ||||
DOI: | 10.26083/tuprints-00020331 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20331 | ||||
Kurzbeschreibung (Abstract): | The main focus of this thesis is on the projective norm on finite-dimensional real or complex tensor products. There are various mathematical subjects with relations to the projective norm. For instance, it appears in the context of operator algebras or in quantum physics. The projective norm on multipartite tensor products is considered to be less accessible. So we use a method from convex algebraic geometry to approximate the projective unit ball by convex supersets, so-called theta bodies. For real multipartite tensor products we obtain theta bodies which are close to the projective unit ball, leading to a generalisation of the Schmidt decomposition. In a second step the method is applied to complex tensor products, in a third step to separable states. In a more general context, the projective norm can be related to binomial ideals, especially to so-called Hibi relations. In this respect, we also focus on a generalisation of the projective unit ball, here called Hibi body, and its theta bodies. It turns out that many statements also hold in this general context. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | Projective norm, nuclear norm, theta body, sum of squares, sos polynomial, convex algebraic geometry, real algebraic geometry, convex optimization, convex relaxation, quantum entanglement, entanglement witness, binomial ideal, Hibi relation, orthogonal design, Projektive Norm, nukleare Norm, Thetakörper, Summe von Quadraten, Sos-Polynom, konvexe algebraische Geometrie, reelle algebraische Geometrie, konvexe Optimierung, konvexe Relaxation, Quantenverschränkung, Verschränkungszeuge, Binomideal, Hibirelation, orthogonales Design | ||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-203316 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Didaktik |
||||
Hinterlegungsdatum: | 16 Nov 2022 13:06 | ||||
Letzte Änderung: | 17 Nov 2022 07:51 | ||||
PPN: | |||||
Referenten: | Kümmerer, Prof. Dr. Burkhard ; Maassen, Prof. Dr. Hans | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 3 Mai 2022 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |