TU Darmstadt / ULB / TUbiblio

Latent Variable Method Demonstrator - software for understanding multivariate data analytics algorithms

Schaeffer, Joachim ; Braatz, Richard D. (2022)
Latent Variable Method Demonstrator - software for understanding multivariate data analytics algorithms.
In: Computers and Chemical Engineering, 167
doi: 10.1016/j.compchemeng.2022.108014
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The ever-increasing quantity of multivariate process data is driving a need for skilled engineers to analyze, interpret, and build models from such data. Multivariate data analytics relies heavily on linear algebra, optimization, and statistics and can be challenging for students to understand given that most curricula do not have strong coverage in the latter three topics. This article describes interactive software – the Latent Variable Demonstrator (LAVADE) – for teaching, learning, and understanding latent variable methods. In this software, users can interactively compare latent variable methods such as Partial Least Squares (PLS), and Principal Component Regression (PCR) with other regression methods such as Least Absolute Shrinkage and Selection Operator (lasso), Ridge Regression (RR), and Elastic Net (EN). LAVADE helps to build intuition on choosing appropriate methods, hyperparameter tuning, and model coefficient interpretation, fostering a conceptual understanding of the algorithms’ differences. The software contains a data generation method and three chemical process datasets, allowing for comparing results of datasets with different levels of complexity. LAVADE is released as open-source software so that others can apply and advance the tool for use in teaching or research.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Schaeffer, Joachim ; Braatz, Richard D.
Art des Eintrags: Bibliographie
Titel: Latent Variable Method Demonstrator - software for understanding multivariate data analytics algorithms
Sprache: Englisch
Publikationsjahr: 1 November 2022
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computers and Chemical Engineering
Jahrgang/Volume einer Zeitschrift: 167
DOI: 10.1016/j.compchemeng.2022.108014
Zugehörige Links:
Kurzbeschreibung (Abstract):

The ever-increasing quantity of multivariate process data is driving a need for skilled engineers to analyze, interpret, and build models from such data. Multivariate data analytics relies heavily on linear algebra, optimization, and statistics and can be challenging for students to understand given that most curricula do not have strong coverage in the latter three topics. This article describes interactive software – the Latent Variable Demonstrator (LAVADE) – for teaching, learning, and understanding latent variable methods. In this software, users can interactively compare latent variable methods such as Partial Least Squares (PLS), and Principal Component Regression (PCR) with other regression methods such as Least Absolute Shrinkage and Selection Operator (lasso), Ridge Regression (RR), and Elastic Net (EN). LAVADE helps to build intuition on choosing appropriate methods, hyperparameter tuning, and model coefficient interpretation, fostering a conceptual understanding of the algorithms’ differences. The software contains a data generation method and three chemical process datasets, allowing for comparing results of datasets with different levels of complexity. LAVADE is released as open-source software so that others can apply and advance the tool for use in teaching or research.

ID-Nummer: 108014
Zusätzliche Informationen:

Art.No.: 108014

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Control and Cyber-Physical Systems (CCPS)
Hinterlegungsdatum: 19 Okt 2022 12:03
Letzte Änderung: 19 Okt 2022 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen