TU Darmstadt / ULB / TUbiblio

Dissolution of β-C₂S Cement Clinker: Part 2 Atomistic Kinetic Monte Carlo (KMC) Upscaling Approach

Izadifar, Mohammadreza ; Ukrainczyk, Neven ; Salah Uddin, Khondakar Mohammad ; Middendorf, Bernhard ; Koenders, Eduardus (2022)
Dissolution of β-C₂S Cement Clinker: Part 2 Atomistic Kinetic Monte Carlo (KMC) Upscaling Approach.
In: Materials, 2022, 15 (19)
doi: 10.26083/tuprints-00022483
Artikel, Zweitveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Cement clinkers containing mainly belite (β-C₂S as a model crystal), replacing alite, offer a promising solution for the development of environmentally friendly solutions to reduce the high level of CO₂ emissions in the production of Portland cement. However, the much lower reactivity of belite compared to alite limits the widespread use of belite cements. Therefore, this work presents a fundamental atomistic computational approach for comprehending and quantifying the mesoscopic forward dissolution rate of β-C₂S, applied to two reactive crystal facets of (100) and (1¯00). For this, an atomistic kinetic Monte Carlo (KMC) upscaling approach for cement clinker was developed. It was based on the calculated activation energies (ΔG*) under far-from-equilibrium conditions obtained by a molecular dynamic simulation using the combined approach of ReaxFF and metadynamics, as described in the Part 1 paper in this Special Issue. Thus, the individual atomistic dissolution rates were used as input parameters for implementing the KMC upscaling approach coded in MATLAB to study the dissolution time and morphology changes at the mesoscopic scale. Four different cases and 21 event scenarios were considered for the dissolution of calcium atoms (Ca) and silicate monomers. For this purpose, the (100) and (1¯00) facets of a β-C₂S crystal were considered using periodic boundary conditions (PBCs). In order to demonstrate the statistical nature of the KMC approach, 40 numerical realizations were presented. The major findings showed a striking layer-by-layer dissolution mechanism in the case of an ideal crystal, where the total dissolution rate was limited by the much slower dissolution of the silicate monomer compared to Ca. The introduction of crystal defects, namely cutting the edges at two crystal boundaries, increased the overall average dissolution rate by a factor of 519.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Izadifar, Mohammadreza ; Ukrainczyk, Neven ; Salah Uddin, Khondakar Mohammad ; Middendorf, Bernhard ; Koenders, Eduardus
Art des Eintrags: Zweitveröffentlichung
Titel: Dissolution of β-C₂S Cement Clinker: Part 2 Atomistic Kinetic Monte Carlo (KMC) Upscaling Approach
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 19
Kollation: 13 Seiten
DOI: 10.26083/tuprints-00022483
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22483
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Cement clinkers containing mainly belite (β-C₂S as a model crystal), replacing alite, offer a promising solution for the development of environmentally friendly solutions to reduce the high level of CO₂ emissions in the production of Portland cement. However, the much lower reactivity of belite compared to alite limits the widespread use of belite cements. Therefore, this work presents a fundamental atomistic computational approach for comprehending and quantifying the mesoscopic forward dissolution rate of β-C₂S, applied to two reactive crystal facets of (100) and (1¯00). For this, an atomistic kinetic Monte Carlo (KMC) upscaling approach for cement clinker was developed. It was based on the calculated activation energies (ΔG*) under far-from-equilibrium conditions obtained by a molecular dynamic simulation using the combined approach of ReaxFF and metadynamics, as described in the Part 1 paper in this Special Issue. Thus, the individual atomistic dissolution rates were used as input parameters for implementing the KMC upscaling approach coded in MATLAB to study the dissolution time and morphology changes at the mesoscopic scale. Four different cases and 21 event scenarios were considered for the dissolution of calcium atoms (Ca) and silicate monomers. For this purpose, the (100) and (1¯00) facets of a β-C₂S crystal were considered using periodic boundary conditions (PBCs). In order to demonstrate the statistical nature of the KMC approach, 40 numerical realizations were presented. The major findings showed a striking layer-by-layer dissolution mechanism in the case of an ideal crystal, where the total dissolution rate was limited by the much slower dissolution of the silicate monomer compared to Ca. The introduction of crystal defects, namely cutting the edges at two crystal boundaries, increased the overall average dissolution rate by a factor of 519.

Freie Schlagworte: cement dissolution, belite cement clinker, atomistic kinetic Monte Carlo, upscaling approach, dissolution rate, crystal defects, periodic boundary conditions (PBC)
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-224837
Zusätzliche Informationen:

This article belongs to the Special Issue Mathematical Modeling of Building Materials

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 690 Hausbau, Bauhandwerk
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Werkstoffe im Bauwesen
Hinterlegungsdatum: 10 Okt 2022 12:43
Letzte Änderung: 11 Okt 2022 05:29
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen