TU Darmstadt / ULB / TUbiblio

Continuous Risk Measures for Driving Support

Eggert, Julian ; Puphal, Tim (2022)
Continuous Risk Measures for Driving Support.
In: International Journal of Automotive Engineering, 2018, 9 (3)
doi: 10.26083/tuprints-00022385
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper, we compare three different model-based risk measures by evaluating their stengths and weaknesses qualitatively and testing them quantitatively on a set of real longitudinal and intersection scenarios. We start with the traditional heuristic Time-To-Collision (TTC), which we extend towards 2D operation and non-crash cases to retrieve the Time-To-Closest-Encounter (TTCE). The second risk measure models position uncertainty with a Gaussian distribution and uses spatial occupancy probabilities for collision risks. We then derive a novel risk measure based on the statistics of sparse critical events and so-called “survival” conditions. The resulting survival analysis shows to have an earlier detection time of crashes and less false positive detections in near-crash and non-crash cases supported by its solid theoretical grounding. It can be seen as a generalization of TTCE and the Gaussian method which is suitable for the validation of ADAS and AD.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Eggert, Julian ; Puphal, Tim
Art des Eintrags: Zweitveröffentlichung
Titel: Continuous Risk Measures for Driving Support
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Society of Automotive Engineers of Japan
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Automotive Engineering
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 3
DOI: 10.26083/tuprints-00022385
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22385
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In this paper, we compare three different model-based risk measures by evaluating their stengths and weaknesses qualitatively and testing them quantitatively on a set of real longitudinal and intersection scenarios. We start with the traditional heuristic Time-To-Collision (TTC), which we extend towards 2D operation and non-crash cases to retrieve the Time-To-Closest-Encounter (TTCE). The second risk measure models position uncertainty with a Gaussian distribution and uses spatial occupancy probabilities for collision risks. We then derive a novel risk measure based on the statistics of sparse critical events and so-called “survival” conditions. The resulting survival analysis shows to have an earlier detection time of crashes and less false positive detections in near-crash and non-crash cases supported by its solid theoretical grounding. It can be seen as a generalization of TTCE and the Gaussian method which is suitable for the validation of ADAS and AD.

Freie Schlagworte: Safety, Risk Indicators, 2D Risk Measures, Risk Measures, Predictive Risk, Prediction Uncertainty, TTX, Time-To-Collision, TTC, Gaussian Collision Probability, Statistics of Sparse Events, Inhomogenous Poisson Processes, Survival Function, VI-DAS
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-223854
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Automatisierungstechnik und Mechatronik > Regelungsmethoden und Intelligente Systeme
Hinterlegungsdatum: 16 Sep 2022 12:26
Letzte Änderung: 19 Sep 2022 13:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen