TU Darmstadt / ULB / TUbiblio

A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models

Roth, Maximilian ; Franke, Georg ; Rinderknecht, Stephan (2022)
A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models.
In: Mathematics, 2022, 10 (13)
doi: 10.26083/tuprints-00022093
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

As decentralized energy supply units, microgrids can make a decisive contribution to achieving climate targets. In this context, it is particularly important to determine the optimal size of the energy components contained in the microgrids and their optimal operating schedule. Hence, mathematical optimization methods are often used in association with such tasks. In particular, mixed-integer linear programming (MILP) has proven to be a useful tool. Due to the versatility of the different energetic components (e.g., storages, solar modules) and their special technical characteristics, linear relationships can often only inadequately describe the real processes. In order to take advantage of linear solution techniques but at the same time better represent these real-world processes, accurate and efficient approximation techniques need to be applied in system modeling. In particular, nonlinear-bivariate functions represent a major challenge, which is why this paper derives and implements a method that addresses this issue. The advantage of this method is that any bivariate mixed-integer nonlinear programming (MINLP) formulation can be transformed into a MILP formulation using this comprehensive method. For a performance comparison, a mixed-integer quadratic constrained programming (MIQCP) model—as an MINLP special case—is applied and transformed into a MILP, and the solution of the transformed problem is compared with the one of the MIQCP. Since there are good off-the-shelf solvers for MIQCP problems available, the comparison is conservative. The results for an exemplary microgrid sizing task show that the method delivers a strong performance, both in terms of approximation error (0.08%) and computation time. The method and its implementation can serve as a general user-tool but also as a basis for further methodological developments and research.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Roth, Maximilian ; Franke, Georg ; Rinderknecht, Stephan
Art des Eintrags: Zweitveröffentlichung
Titel: A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematics
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 13
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00022093
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22093
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

As decentralized energy supply units, microgrids can make a decisive contribution to achieving climate targets. In this context, it is particularly important to determine the optimal size of the energy components contained in the microgrids and their optimal operating schedule. Hence, mathematical optimization methods are often used in association with such tasks. In particular, mixed-integer linear programming (MILP) has proven to be a useful tool. Due to the versatility of the different energetic components (e.g., storages, solar modules) and their special technical characteristics, linear relationships can often only inadequately describe the real processes. In order to take advantage of linear solution techniques but at the same time better represent these real-world processes, accurate and efficient approximation techniques need to be applied in system modeling. In particular, nonlinear-bivariate functions represent a major challenge, which is why this paper derives and implements a method that addresses this issue. The advantage of this method is that any bivariate mixed-integer nonlinear programming (MINLP) formulation can be transformed into a MILP formulation using this comprehensive method. For a performance comparison, a mixed-integer quadratic constrained programming (MIQCP) model—as an MINLP special case—is applied and transformed into a MILP, and the solution of the transformed problem is compared with the one of the MIQCP. Since there are good off-the-shelf solvers for MIQCP problems available, the comparison is conservative. The results for an exemplary microgrid sizing task show that the method delivers a strong performance, both in terms of approximation error (0.08%) and computation time. The method and its implementation can serve as a general user-tool but also as a basis for further methodological developments and research.

Freie Schlagworte: MILP; MINLP; MIQCP; big-M; sizing; scheduling; microgrids; linearization; nonlinear; bivariate
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-220931
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Mechatronische Systeme im Maschinenbau (IMS)
Hinterlegungsdatum: 26 Aug 2022 12:10
Letzte Änderung: 29 Aug 2022 05:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen