TU Darmstadt / ULB / TUbiblio

Solid solution hardening effects on structure evolution and mechanical properties of nanostructured binary and high entropy alloys after high pressure torsion

Keil, Tom ; Minnert, Christian ; Bruder, Enrico ; Durst, Karsten (2022)
Solid solution hardening effects on structure evolution and mechanical properties of nanostructured binary and high entropy alloys after high pressure torsion.
In: IOP Conference Series: Materials Science and Engineering, 2022, 1249
doi: 10.26083/tuprints-00021999
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Two different alloy series (Cu-X, Ni-X) have been selected to investigate the effects of solutes on the saturation grain size, the thermal stability and mechanical properties after high pressure torsion. The results of the Cu-X series indicate that the saturation grain size does not correlate with the stacking fault energy but shows good agreement with solid solution hardening according to the Labusch model. This correlation does not only hold for binaries, but also for chemically complex high entropy alloys (Ni-X) in the form of (CrMnFeCo)xNi1-x, where the Varvenne model is used to describe solid solution hardening. The alloy series exhibit a grain size in the range of 50 – 425 nm after high pressure torsion and the solutes increase the strength as well as the thermal stability of the alloys after annealing. The nanostructured alloys exhibit an enhanced strain rate sensitivity exponent, as determined from nanoindentation strain rate jump and constant contact pressure creep testing, whereas an enhanced rate sensitivity is found at low strain rates. The relatively lower rate sensitivity of the alloys as well as their higher thermal stability indicate, that defect storage and annihilation is strongly influenced by a complex interaction of solutes, dislocations and grain boundaries.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Keil, Tom ; Minnert, Christian ; Bruder, Enrico ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Solid solution hardening effects on structure evolution and mechanical properties of nanostructured binary and high entropy alloys after high pressure torsion
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IOP Conference Series: Materials Science and Engineering
Jahrgang/Volume einer Zeitschrift: 1249
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00021999
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21999
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Two different alloy series (Cu-X, Ni-X) have been selected to investigate the effects of solutes on the saturation grain size, the thermal stability and mechanical properties after high pressure torsion. The results of the Cu-X series indicate that the saturation grain size does not correlate with the stacking fault energy but shows good agreement with solid solution hardening according to the Labusch model. This correlation does not only hold for binaries, but also for chemically complex high entropy alloys (Ni-X) in the form of (CrMnFeCo)xNi1-x, where the Varvenne model is used to describe solid solution hardening. The alloy series exhibit a grain size in the range of 50 – 425 nm after high pressure torsion and the solutes increase the strength as well as the thermal stability of the alloys after annealing. The nanostructured alloys exhibit an enhanced strain rate sensitivity exponent, as determined from nanoindentation strain rate jump and constant contact pressure creep testing, whereas an enhanced rate sensitivity is found at low strain rates. The relatively lower rate sensitivity of the alloys as well as their higher thermal stability indicate, that defect storage and annihilation is strongly influenced by a complex interaction of solutes, dislocations and grain boundaries.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-219994
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 12 Aug 2022 12:08
Letzte Änderung: 06 Dez 2023 07:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen