TU Darmstadt / ULB / TUbiblio

Entwicklung eines Radar-Sensormodells

Linnhoff, Clemens (2022)
Entwicklung eines Radar-Sensormodells.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00021661
Masterarbeit, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

In dieser Arbeit wird ein Radar-Sensormodell vorgestellt, das auf einem Fouriertracing-Ansatz basiert. Um die Radarstrahlung im Frequenzbereich zu simulieren, wird ein Raytracing-Verfahren abgewandelt, sodass Radarmessdaten, wie Entfernung, Relativgeschwindigkeit, Azimutwinkel und Leistung, am Ausgang des Raytracers anliegen. Anschließend werden mit diesen Daten die Eigenschaften einer Schnellen Fouriertransformation (FFT) simuliert. Das Radarmodell wird in Vires Virtual Test Drive (VTD) implementiert. Nach einer Einführung in die Theorie der Radartechnologie und des Raytracings wird ein einfaches Radarmodell mit Fouriertracing vorgestellt. Da das Signal beim Fouriertracing im Frequenzbereich simuliert wird, werden verschiedene Charakteristiken einer FFT, wie die Anwendung von Fensterfunktionen oder durch einen großen Messbereich auftretende Ambiguitäten, berücksichtigt. Außerdem werden Leistungsdämpfungen, z.B. durch das Entfernungsgesetz oder die Antennencharakteristik, implementiert. Durch weitere Anpassung des Raytracers wird die Mehrwegeausbreitung der Radarstrahlen umgesetzt. So werden z.B. Bodenreflexionen berücksichtigt und Ziele, die nicht im direkten Sichtbereich des Radars liegen, von der Strahlung erfasst. In einem weiteren Schritt wird die Rückstrahlleistung bei der Mehrwegeausbreitung genauer betrachtet. Dazu wird zunächst ein Reflektivitätsmodell für Asphalt implementiert. Für die Optimierung spekularer Reflexionen an metallischen Oberflächen wird ein Optimierungsverfahren eingesetzt, das die zu einem Strahl äqui- valente Fläche nach einem idealen Reflexionspunkt absucht. Jeder Schritt der Modellbildung wird in VTD implementiert und einzeln mit realen Sensordaten verifiziert. Abschließend wird der am Ausgang des Gesamtmodells anliegende Radarwürfel durch Simulation typischer Verkehrsszenarien mit Messdaten der gleichen Szenarien verglichen. So wird das Radarmodell validiert und die Grenzen der Modellbildung aufgeführt.

Typ des Eintrags: Masterarbeit
Erschienen: 2022
Autor(en): Linnhoff, Clemens
Art des Eintrags: Erstveröffentlichung
Titel: Entwicklung eines Radar-Sensormodells
Sprache: Deutsch
Publikationsjahr: 2022
Ort: Darmstadt
Kollation: IX, 84 Seiten
DOI: 10.26083/tuprints-00021661
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21661
Kurzbeschreibung (Abstract):

In dieser Arbeit wird ein Radar-Sensormodell vorgestellt, das auf einem Fouriertracing-Ansatz basiert. Um die Radarstrahlung im Frequenzbereich zu simulieren, wird ein Raytracing-Verfahren abgewandelt, sodass Radarmessdaten, wie Entfernung, Relativgeschwindigkeit, Azimutwinkel und Leistung, am Ausgang des Raytracers anliegen. Anschließend werden mit diesen Daten die Eigenschaften einer Schnellen Fouriertransformation (FFT) simuliert. Das Radarmodell wird in Vires Virtual Test Drive (VTD) implementiert. Nach einer Einführung in die Theorie der Radartechnologie und des Raytracings wird ein einfaches Radarmodell mit Fouriertracing vorgestellt. Da das Signal beim Fouriertracing im Frequenzbereich simuliert wird, werden verschiedene Charakteristiken einer FFT, wie die Anwendung von Fensterfunktionen oder durch einen großen Messbereich auftretende Ambiguitäten, berücksichtigt. Außerdem werden Leistungsdämpfungen, z.B. durch das Entfernungsgesetz oder die Antennencharakteristik, implementiert. Durch weitere Anpassung des Raytracers wird die Mehrwegeausbreitung der Radarstrahlen umgesetzt. So werden z.B. Bodenreflexionen berücksichtigt und Ziele, die nicht im direkten Sichtbereich des Radars liegen, von der Strahlung erfasst. In einem weiteren Schritt wird die Rückstrahlleistung bei der Mehrwegeausbreitung genauer betrachtet. Dazu wird zunächst ein Reflektivitätsmodell für Asphalt implementiert. Für die Optimierung spekularer Reflexionen an metallischen Oberflächen wird ein Optimierungsverfahren eingesetzt, das die zu einem Strahl äqui- valente Fläche nach einem idealen Reflexionspunkt absucht. Jeder Schritt der Modellbildung wird in VTD implementiert und einzeln mit realen Sensordaten verifiziert. Abschließend wird der am Ausgang des Gesamtmodells anliegende Radarwürfel durch Simulation typischer Verkehrsszenarien mit Messdaten der gleichen Szenarien verglichen. So wird das Radarmodell validiert und die Grenzen der Modellbildung aufgeführt.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-216612
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD)
Hinterlegungsdatum: 22 Jul 2022 12:33
Letzte Änderung: 14 Dez 2022 18:08
PPN: 497916347
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen