Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V. ; Dadvand, Abdolrahman ; Wörner, Martin ; Marschall, Holger (2022)
A unified finite volume framework for phase-field simulations of an arbitrary number of fluid phases.
In: The Canadian Journal of Chemical Engineering, 100 (9)
doi: 10.1002/cjce.24510
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
While the phase-field methodology is widely adopted for simulating two-phase flows, the simulation of an arbitrary number (N ≥ 2) of fluid phases at physical fidelity is non-trivial and requires special attention concerning mathematical modelling, numerical discretization, and solution algorithm. We present our most recent work with a focus on validation for multiple immiscible, incompressible, and isothermal phases, enhancing further our library for diffuse interface phase-field interface capturing methods in OpenFOAM (FOAM-extend 4.0/4.1). The phase-field method is an energetic variational formulation based on the work of Cahn and Hilliard where the interface is composed of a physical diffuse layer resembling realistic interfaces. The evolution of the phases is then governed by the minimization of the free energy of the system. The accuracy of the method is demonstrated for a number of test problems, including a floating liquid lens, bubble rise in two stratified layers, and drop impact onto thin liquid film.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Bagheri, Milad ; Stumpf, Bastian ; Roisman, Ilia V. ; Dadvand, Abdolrahman ; Wörner, Martin ; Marschall, Holger |
Art des Eintrags: | Bibliographie |
Titel: | A unified finite volume framework for phase-field simulations of an arbitrary number of fluid phases |
Sprache: | Englisch |
Publikationsjahr: | 21 Juni 2022 |
Verlag: | Wiley Periodicals LLC |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | The Canadian Journal of Chemical Engineering |
Jahrgang/Volume einer Zeitschrift: | 100 |
(Heft-)Nummer: | 9 |
DOI: | 10.1002/cjce.24510 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | While the phase-field methodology is widely adopted for simulating two-phase flows, the simulation of an arbitrary number (N ≥ 2) of fluid phases at physical fidelity is non-trivial and requires special attention concerning mathematical modelling, numerical discretization, and solution algorithm. We present our most recent work with a focus on validation for multiple immiscible, incompressible, and isothermal phases, enhancing further our library for diffuse interface phase-field interface capturing methods in OpenFOAM (FOAM-extend 4.0/4.1). The phase-field method is an energetic variational formulation based on the work of Cahn and Hilliard where the interface is composed of a physical diffuse layer resembling realistic interfaces. The evolution of the phases is then governed by the minimization of the free energy of the system. The accuracy of the method is demonstrated for a number of test problems, including a floating liquid lens, bubble rise in two stratified layers, and drop impact onto thin liquid film. |
Freie Schlagworte: | Cahn–Hilliard Navier–Stokes, Multiphase flows, Phase-field, Diffuse Interface Model |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Strömungslehre und Aerodynamik (SLA) 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Analysis 04 Fachbereich Mathematik > Analysis > Mathematische Modellierung und Analysis 16 Fachbereich Maschinenbau > Fachgebiet Strömungslehre und Aerodynamik (SLA) > Tropfendynamik und Sprays |
TU-Projekte: | DFG|TRR150|TRR_150_B08_Marschal |
Hinterlegungsdatum: | 19 Jul 2022 07:27 |
Letzte Änderung: | 29 Nov 2023 10:54 |
PPN: | 501880887 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
A unified finite volume framework for phase‐field simulations of an arbitrary number of fluid phases. (deposited 23 Dez 2022 14:20)
- A unified finite volume framework for phase-field simulations of an arbitrary number of fluid phases. (deposited 19 Jul 2022 07:27) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |