TU Darmstadt / ULB / TUbiblio

A computer vision system for saw blade condition monitoring

Jourdan, Nicolas ; Biegel, Tobias ; Knauthe, Volker ; von Buelow, Max ; Guthe, Stefan ; Metternich, Joachim (2021)
A computer vision system for saw blade condition monitoring.
54th CIRP Conference on Manufacturing Systems. virtual Conference (22.09.2021-24.09.2021)
doi: 10.1016/j.procir.2021.11.186
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Tool condition monitoring is a key component of predictive maintenance in smart manufacturing. Predicting excessive tool wear in machining processes becomes increasingly difficult if different materials need to be processed. We propose a novel computer vision-based system for saw blade condition monitoring that is independent of the processed materials and combines deep learning with classic computer vision. Our approach allows for accurate condition monitoring of blade wear which can further be used for predictive maintenance. Additionally, the system can classify different defect types such as missing blade teeth, thus preventing the production of scrap parts.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Jourdan, Nicolas ; Biegel, Tobias ; Knauthe, Volker ; von Buelow, Max ; Guthe, Stefan ; Metternich, Joachim
Art des Eintrags: Bibliographie
Titel: A computer vision system for saw blade condition monitoring
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Elsevier
Reihe: Procedia CIRP
Band einer Reihe: 104
Veranstaltungstitel: 54th CIRP Conference on Manufacturing Systems
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 22.09.2021-24.09.2021
DOI: 10.1016/j.procir.2021.11.186
Zugehörige Links:
Kurzbeschreibung (Abstract):

Tool condition monitoring is a key component of predictive maintenance in smart manufacturing. Predicting excessive tool wear in machining processes becomes increasingly difficult if different materials need to be processed. We propose a novel computer vision-based system for saw blade condition monitoring that is independent of the processed materials and combines deep learning with classic computer vision. Our approach allows for accurate condition monitoring of blade wear which can further be used for predictive maintenance. Additionally, the system can classify different defect types such as missing blade teeth, thus preventing the production of scrap parts.

Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 18 Jul 2022 08:25
Letzte Änderung: 03 Jul 2024 02:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen