TU Darmstadt / ULB / TUbiblio

Empirical modelling of a near-traffic emission hotspot – analysis of immission reduction potentials

Steinhaus, Tim ; Hartwig, Moritz ; Beidl, Christian (2022)
Empirical modelling of a near-traffic emission hotspot – analysis of immission reduction potentials.
In: International Journal of Transport Development and Integration, 2021, 5 (4)
doi: 10.26083/tuprints-00021397
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Two of the greatest challenges for future individual mobility are urban air quality and climate protection. Although a steady reduction of pollutant emissions from motor vehicles has been achieved in the past, local pollution levels within cities still reach levels that are considered hazardous to health. Although the significant contribution of road traffic to total pollution is known, especially at traffic hotspots, modelling the exact interactions remains a challenge. In this paper, a novel approach for the determination of the emission–immission interaction on the basis of a neural network model for the NO₂ immission at a near-traffic hotspot scenario is presented. In addition to a detailed description of the modelling procedure, significance analysis of the influencing variables and the interactions considered, it is also described how the specific emissions for the entire vehicle fleet are implemented in accordance with different emission standards under real driving conditions. On the basis of the model presented, achievable immission levels for currently available and future technology are investigated within scenario analysis. results show that concentrations of less than half of today’s yearly average limit values are technically feasible in hotspot situations.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Steinhaus, Tim ; Hartwig, Moritz ; Beidl, Christian
Art des Eintrags: Zweitveröffentlichung
Titel: Empirical modelling of a near-traffic emission hotspot – analysis of immission reduction potentials
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: WIT Press
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Transport Development and Integration
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 4
DOI: 10.26083/tuprints-00021397
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21397
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Two of the greatest challenges for future individual mobility are urban air quality and climate protection. Although a steady reduction of pollutant emissions from motor vehicles has been achieved in the past, local pollution levels within cities still reach levels that are considered hazardous to health. Although the significant contribution of road traffic to total pollution is known, especially at traffic hotspots, modelling the exact interactions remains a challenge. In this paper, a novel approach for the determination of the emission–immission interaction on the basis of a neural network model for the NO₂ immission at a near-traffic hotspot scenario is presented. In addition to a detailed description of the modelling procedure, significance analysis of the influencing variables and the interactions considered, it is also described how the specific emissions for the entire vehicle fleet are implemented in accordance with different emission standards under real driving conditions. On the basis of the model presented, achievable immission levels for currently available and future technology are investigated within scenario analysis. results show that concentrations of less than half of today’s yearly average limit values are technically feasible in hotspot situations.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-213977
Zusätzliche Informationen:

Keywords: air pollution, emission-immission-interaction, recurrent neural networks, NO₂, NOₓ

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe (VKM)
Hinterlegungsdatum: 18 Mai 2022 12:04
Letzte Änderung: 19 Mai 2022 05:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen