Warbinek, Jessica ; Anđelić, Brankica ; Block, Michael ; Chhetri, Premaditya ; Claessens, Arno ; Ferrer, Rafael ; Giacoppo, Francesca ; Kaleja, Oliver ; Kieck, Tom ; Kim, EunKang ; Laatiaoui, Mustapha ; Lantis, Jeremy ; Mistry, Andrew ; Münzberg, Danny ; Nothhelfer, Steven ; Raeder, Sebastian ; Rey-Herme, Emmanuel ; Rickert, Elisabeth ; Romans, Jekabs ; Romero-Romero, Elisa ; Vandebrouck, Marine ; Duppen, Piet van ; Walther, Thomas (2022)
Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides.
In: Atoms, 2022, 10 (2)
doi: 10.26083/tuprints-00021280
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t₁/₂>1 h) and shorter-lived nuclides (t₁/₂<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t₁/₂=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t₁/₂=0.8 s) by applying a newly implemented short RADRIS measurement cycle.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Warbinek, Jessica ; Anđelić, Brankica ; Block, Michael ; Chhetri, Premaditya ; Claessens, Arno ; Ferrer, Rafael ; Giacoppo, Francesca ; Kaleja, Oliver ; Kieck, Tom ; Kim, EunKang ; Laatiaoui, Mustapha ; Lantis, Jeremy ; Mistry, Andrew ; Münzberg, Danny ; Nothhelfer, Steven ; Raeder, Sebastian ; Rey-Herme, Emmanuel ; Rickert, Elisabeth ; Romans, Jekabs ; Romero-Romero, Elisa ; Vandebrouck, Marine ; Duppen, Piet van ; Walther, Thomas |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Atoms |
Jahrgang/Volume einer Zeitschrift: | 10 |
(Heft-)Nummer: | 2 |
Kollation: | 12 Seiten |
DOI: | 10.26083/tuprints-00021280 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21280 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t₁/₂>1 h) and shorter-lived nuclides (t₁/₂<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t₁/₂=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t₁/₂=0.8 s) by applying a newly implemented short RADRIS measurement cycle. |
Freie Schlagworte: | laser spectroscopy, resonance ionization, atomic level scheme, gas cell, radiation detection, heavy actinides |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-212806 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Angewandte Physik 05 Fachbereich Physik > Institut für Kernphysik |
Hinterlegungsdatum: | 06 Mai 2022 11:19 |
Letzte Änderung: | 09 Mai 2022 09:04 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides. (deposited 06 Mai 2022 11:19) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |