TU Darmstadt / ULB / TUbiblio

Robot Learning From Randomized Simulations: A Review

Muratore, Fabio ; Ramos, Fabio ; Turk, Greg ; Yu, Wenhao ; Gienger, Michael ; Peters, Jan (2022)
Robot Learning From Randomized Simulations: A Review.
In: Frontiers in Robotics and AI, 2022, 9
doi: 10.26083/tuprints-00021227
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the “reality gap.” We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named “domain randomization” which is a method for learning from randomized simulations.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Muratore, Fabio ; Ramos, Fabio ; Turk, Greg ; Yu, Wenhao ; Gienger, Michael ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Robot Learning From Randomized Simulations: A Review
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Robotics and AI
Jahrgang/Volume einer Zeitschrift: 9
Kollation: 19 Seiten
DOI: 10.26083/tuprints-00021227
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21227
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

The rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly realistic, all simulators are by construction based on models, hence inevitably imperfect. This raises the question of how simulators can be modified to facilitate learning robot control policies and overcome the mismatch between simulation and reality, often called the “reality gap.” We provide a comprehensive review of sim-to-real research for robotics, focusing on a technique named “domain randomization” which is a method for learning from randomized simulations.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-212275
Zusätzliche Informationen:

Keywords: robotics, simulation, reality gap, simulation optimization bias, reinforcement learning, domain randomization, sim-to-real

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
Hinterlegungsdatum: 04 Mai 2022 13:47
Letzte Änderung: 27 Okt 2023 10:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen