TU Darmstadt / ULB / TUbiblio

From template to anchors: transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability

Davoodi, Ayoob ; Mohseni, Omid ; Seyfarth, Andre ; Sharbafi, Maziar A. (2022)
From template to anchors: transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability.
In: Royal Society Open Science, 2019, 6 (3)
doi: 10.26083/tuprints-00013228
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Biomechanical models with different levels of complexity are of advantage to understand the underlying principles of legged locomotion. Following a minimalistic approach of gradually increasing model complexity based on Template & Anchor concept, in this paper, a spring-loaded inverted pendulumbased walking model is extended by a rigid trunk, hip muscles and reflex control, called nmF (neuromuscular force modulated compliant hip) model. Our control strategy includes leg force feedback to activate hip muscles (originated from the FMCH approach), and a discrete linear quadratic regulator for adapting muscle reflexes. The nmF model demonstrates human-like walking kinematic and dynamic features such as the virtual pendulum (VP) concept, inherited from the FMCH model. Moreover, the robustness against postural perturbations is two times higher in the nmF model compared to the FMCH model and even further increased in the adaptive nmF model. This is due to the intrinsic muscle dynamics and the tuning of the reflex gains. With this, we demonstrate, for the first time, the evolution of mechanical template models (e.g. VP concept) to a more physiological level (nmF model). This shows that the template model can be successfully used to design and control robust locomotor systems with more realistic system behaviours.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Davoodi, Ayoob ; Mohseni, Omid ; Seyfarth, Andre ; Sharbafi, Maziar A.
Art des Eintrags: Zweitveröffentlichung
Titel: From template to anchors: transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2019
Verlag: RSC Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Royal Society Open Science
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 3
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00013228
URL / URN: https://tuprints.ulb.tu-darmstadt.de/13228
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Biomechanical models with different levels of complexity are of advantage to understand the underlying principles of legged locomotion. Following a minimalistic approach of gradually increasing model complexity based on Template & Anchor concept, in this paper, a spring-loaded inverted pendulumbased walking model is extended by a rigid trunk, hip muscles and reflex control, called nmF (neuromuscular force modulated compliant hip) model. Our control strategy includes leg force feedback to activate hip muscles (originated from the FMCH approach), and a discrete linear quadratic regulator for adapting muscle reflexes. The nmF model demonstrates human-like walking kinematic and dynamic features such as the virtual pendulum (VP) concept, inherited from the FMCH model. Moreover, the robustness against postural perturbations is two times higher in the nmF model compared to the FMCH model and even further increased in the adaptive nmF model. This is due to the intrinsic muscle dynamics and the tuning of the reflex gains. With this, we demonstrate, for the first time, the evolution of mechanical template models (e.g. VP concept) to a more physiological level (nmF model). This shows that the template model can be successfully used to design and control robust locomotor systems with more realistic system behaviours.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-132286
Zusätzliche Informationen:

Supplements:

https://royalsocietypublishing.org/doi/suppl/10.1098/rsos.181911

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
700 Künste und Unterhaltung > 796 Sport
Fachbereich(e)/-gebiet(e): 03 Fachbereich Humanwissenschaften
03 Fachbereich Humanwissenschaften > Institut für Sportwissenschaft
Hinterlegungsdatum: 28 Mär 2022 12:18
Letzte Änderung: 29 Mär 2022 16:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen