Steinhaus, Tim ; Thiem, Mikula ; Beidl, Christian (2022)
NO₂-immission assessment for an urban hot-spot by modelling the emission–immission interaction.
In: Automotive and Engine Technology, 2022, 6 (3-4)
doi: 10.26083/tuprints-00021051
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered potentially hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modelling the exact interaction remains challenging. At the same time, even lower vehicle emissions can be achieved by using synthetic fuels and the latest exhaust gas cleaning technologies. In the paper at hand, a neural network modelling approach for traffic-induced immission load is presented. On this basis, a categorization of vehicle concepts regarding their immission contribution within an impact scale is proposed. Furthermore, changes in the immission load as a result of different fleet compositions and emission factors are analysed within different scenarios. A final comparison is made as to which modification measures in the vehicle fleet offer the greatest potential for overall cleaner air.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Steinhaus, Tim ; Thiem, Mikula ; Beidl, Christian |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | NO₂-immission assessment for an urban hot-spot by modelling the emission–immission interaction |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | Springer International Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Automotive and Engine Technology |
Jahrgang/Volume einer Zeitschrift: | 6 |
(Heft-)Nummer: | 3-4 |
DOI: | 10.26083/tuprints-00021051 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21051 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered potentially hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modelling the exact interaction remains challenging. At the same time, even lower vehicle emissions can be achieved by using synthetic fuels and the latest exhaust gas cleaning technologies. In the paper at hand, a neural network modelling approach for traffic-induced immission load is presented. On this basis, a categorization of vehicle concepts regarding their immission contribution within an impact scale is proposed. Furthermore, changes in the immission load as a result of different fleet compositions and emission factors are analysed within different scenarios. A final comparison is made as to which modification measures in the vehicle fleet offer the greatest potential for overall cleaner air. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-210516 |
Zusätzliche Informationen: | Keywords: Air quality, Zero impact, SubZero, Emission, Immission, Emission-immission-interaction, Synthetic fuel, OME |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe (VKM) 16 Fachbereich Maschinenbau > Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe (VKM) > Methodik 16 Fachbereich Maschinenbau > Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe (VKM) > Real Driving Emissions |
Hinterlegungsdatum: | 25 Mär 2022 13:06 |
Letzte Änderung: | 28 Mär 2022 06:25 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- NO₂-immission assessment for an urban hot-spot by modelling the emission–immission interaction. (deposited 25 Mär 2022 13:06) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |