TU Darmstadt / ULB / TUbiblio

High‐temperature phase and microstructure evolution of polymer‐derived SiZrCN and SiZrBCN ceramic nanocomposites

Feng, Bo ; Peter, Johannes ; Fasel, Claudia ; Wen, Qingbo ; Zhang, Yue ; Kleebe, Hans‐Joachim ; Ionescu, Emanuel (2022)
High‐temperature phase and microstructure evolution of polymer‐derived SiZrCN and SiZrBCN ceramic nanocomposites.
In: Journal of the American Ceramic Society, 2020, 103 (12)
doi: 10.26083/tuprints-00020191
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A zirconium and a zirconium/boron containing single-source precursor were synthesized via chemical modification of a commercially available polysilazane (Durazane 1800) with tetrakis (dimethylamido) zirconium (IV) (TDMAZ) as well as with both TDMAZ and borane dimethyl sulfide complex, respectively. The polymer-to-ceramic transformation of the precursors into SiZrCN and SiZrBCN ceramics as well as the thermal evolution of their phase composition and microstructure was studied. The pyrolysis of the precursors led to the formation of amorphous SiZrCN and SiZrBCN ceramics. Interestingly, the as prepared SiZrBCN ceramic was single-phasic and fully featureless; whereas SiZrCN exhibited the presence of nano-sized ZrO₂ particles; however, only very localized in close proximity to internal surfaces. Heat treatment at higher temperatures induced crystallization processes in both prepared ceramics. Thus, at temperatures beyond 1500°C, cubic ZrCₓNy, β-Si₃N₄ as well as β-SiC were generated. It was shown that the incorporation of B into SiZrCN suppressed the crystallization of ZrCₓNy and, in addition, impeded the reaction of SiNₓ with C, resulting in an improved thermal stability of SiZrBCN compared to SiZrCN ceramic. Moreover boron was shown to be mainly located in the sp²-hybridized “free” carbon present in SiZrBCN, forming a turbostratic BCN phase which has been unequivocally detected by means of high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDS).

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Feng, Bo ; Peter, Johannes ; Fasel, Claudia ; Wen, Qingbo ; Zhang, Yue ; Kleebe, Hans‐Joachim ; Ionescu, Emanuel
Art des Eintrags: Zweitveröffentlichung
Titel: High‐temperature phase and microstructure evolution of polymer‐derived SiZrCN and SiZrBCN ceramic nanocomposites
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: American Ceramic Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 12
DOI: 10.26083/tuprints-00020191
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20191
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

A zirconium and a zirconium/boron containing single-source precursor were synthesized via chemical modification of a commercially available polysilazane (Durazane 1800) with tetrakis (dimethylamido) zirconium (IV) (TDMAZ) as well as with both TDMAZ and borane dimethyl sulfide complex, respectively. The polymer-to-ceramic transformation of the precursors into SiZrCN and SiZrBCN ceramics as well as the thermal evolution of their phase composition and microstructure was studied. The pyrolysis of the precursors led to the formation of amorphous SiZrCN and SiZrBCN ceramics. Interestingly, the as prepared SiZrBCN ceramic was single-phasic and fully featureless; whereas SiZrCN exhibited the presence of nano-sized ZrO₂ particles; however, only very localized in close proximity to internal surfaces. Heat treatment at higher temperatures induced crystallization processes in both prepared ceramics. Thus, at temperatures beyond 1500°C, cubic ZrCₓNy, β-Si₃N₄ as well as β-SiC were generated. It was shown that the incorporation of B into SiZrCN suppressed the crystallization of ZrCₓNy and, in addition, impeded the reaction of SiNₓ with C, resulting in an improved thermal stability of SiZrBCN compared to SiZrCN ceramic. Moreover boron was shown to be mainly located in the sp²-hybridized “free” carbon present in SiZrBCN, forming a turbostratic BCN phase which has been unequivocally detected by means of high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDS).

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-201911
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 25 Mär 2022 13:20
Letzte Änderung: 28 Mär 2022 06:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen