TU Darmstadt / ULB / TUbiblio

High‐temperature phase and microstructure evolution of polymer‐derived SiZrCN and SiZrBCN ceramic nanocomposites

Feng, Bo and Peter, Johannes and Fasel, Claudia and Wen, Qingbo and Zhang, Yue and Kleebe, Hans-Joachim and Ionescu, Emanuel (2020):
High‐temperature phase and microstructure evolution of polymer‐derived SiZrCN and SiZrBCN ceramic nanocomposites.
In: Journal of the American Ceramic Society, 103 (12), pp. 7001-7013. Wiley, ISSN 00027820, e-ISSN 1551-2916,
DOI: 10.1111/jace.17149,
[Article]

Abstract

A zirconium and a zirconium/boron containing single‐source precursor were synthesized via chemical modification of a commercially available polysilazane (Durazane 1800) with tetrakis (dimethylamido) zirconium (IV) (TDMAZ) as well as with both TDMAZ and borane dimethyl sulfide complex, respectively. The polymer‐to‐ceramic transformation of the precursors into SiZrCN and SiZrBCN ceramics as well as the thermal evolution of their phase composition and microstructure was studied. The pyrolysis of the precursors led to the formation of amorphous SiZrCN and SiZrBCN ceramics. Interestingly, the as prepared SiZrBCN ceramic was single‐phasic and fully featureless; whereas SiZrCN exhibited the presence of nano‐sized ZrO2 particles; however, only very localized in close proximity to internal surfaces. Heat treatment at higher temperatures induced crystallization processes in both prepared ceramics. Thus, at temperatures beyond 1500°C, cubic ZrCxNy, β‐Si3N4 as well as β‐SiC were generated. It was shown that the incorporation of B into SiZrCN suppressed the crystallization of ZrCxNy and, in addition, impeded the reaction of SiNx with C, resulting in an improved thermal stability of SiZrBCN compared to SiZrCN ceramic. Moreover boron was shown to be mainly located in the sp2‐hybridized “free” carbon present in SiZrBCN, forming a turbostratic BCN phase which has been unequivocally detected by means of high‐resolution transmission electron microscopy (HRTEM) and energy‐dispersive X‐ray spectroscopy (EDS).

Item Type: Article
Erschienen: 2020
Creators: Feng, Bo and Peter, Johannes and Fasel, Claudia and Wen, Qingbo and Zhang, Yue and Kleebe, Hans-Joachim and Ionescu, Emanuel
Title: High‐temperature phase and microstructure evolution of polymer‐derived SiZrCN and SiZrBCN ceramic nanocomposites
Language: English
Abstract:

A zirconium and a zirconium/boron containing single‐source precursor were synthesized via chemical modification of a commercially available polysilazane (Durazane 1800) with tetrakis (dimethylamido) zirconium (IV) (TDMAZ) as well as with both TDMAZ and borane dimethyl sulfide complex, respectively. The polymer‐to‐ceramic transformation of the precursors into SiZrCN and SiZrBCN ceramics as well as the thermal evolution of their phase composition and microstructure was studied. The pyrolysis of the precursors led to the formation of amorphous SiZrCN and SiZrBCN ceramics. Interestingly, the as prepared SiZrBCN ceramic was single‐phasic and fully featureless; whereas SiZrCN exhibited the presence of nano‐sized ZrO2 particles; however, only very localized in close proximity to internal surfaces. Heat treatment at higher temperatures induced crystallization processes in both prepared ceramics. Thus, at temperatures beyond 1500°C, cubic ZrCxNy, β‐Si3N4 as well as β‐SiC were generated. It was shown that the incorporation of B into SiZrCN suppressed the crystallization of ZrCxNy and, in addition, impeded the reaction of SiNx with C, resulting in an improved thermal stability of SiZrBCN compared to SiZrCN ceramic. Moreover boron was shown to be mainly located in the sp2‐hybridized “free” carbon present in SiZrBCN, forming a turbostratic BCN phase which has been unequivocally detected by means of high‐resolution transmission electron microscopy (HRTEM) and energy‐dispersive X‐ray spectroscopy (EDS).

Journal or Publication Title: Journal of the American Ceramic Society
Journal volume: 103
Number: 12
Publisher: Wiley
Uncontrolled Keywords: China Scholarship Council, Grant Number: 201806020006, Deutsche Forschungsgemeinschaft, Grant Number: IO 64/14‐1, polymer‐derived ceramic nanocomposites, single‐source precursor, SiZrBCN ceramic, TEM characterization, ZrB2 ceramic
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Earth Science
11 Department of Materials and Earth Sciences > Earth Science > Geo-Material-Science
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids
Date Deposited: 20 Oct 2020 05:26
DOI: 10.1111/jace.17149
Official URL: https://doi.org/10.1111/jace.17149
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details