TU Darmstadt / ULB / TUbiblio

Normalizing Flows With Multi-Scale Autoregressive Priors

Bhattacharyya, Apratim ; Mahajan, Shweta ; Fritz, Mario ; Schiele, Bernt ; Roth, Stefan (2020)
Normalizing Flows With Multi-Scale Autoregressive Priors.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. virtual Conference (14.06.2020-19.06.2020)
doi: 10.1109/CVPR42600.2020.00844
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Flow-based generative models are an important class of exact inference models that admit efficient inference and sampling for image synthesis. Owing to the efficiency constraints on the design of the flow layers, e.g. split coupling flow layers in which approximately half the pixels do not undergo further transformations, they have limited expressiveness for modeling long-range data dependencies compared to autoregressive models that rely on conditional pixel-wise generation. In this work, we improve the representational power of flow-based models by introducing channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR). Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data. The resulting model achieves state-of-the-art density estimation results on MNIST, CIFAR-10, and ImageNet. Furthermore, we show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Bhattacharyya, Apratim ; Mahajan, Shweta ; Fritz, Mario ; Schiele, Bernt ; Roth, Stefan
Art des Eintrags: Bibliographie
Titel: Normalizing Flows With Multi-Scale Autoregressive Priors
Sprache: Englisch
Publikationsjahr: 5 August 2020
Verlag: IEEE
Buchtitel: Proceedings: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Veranstaltungstitel: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 14.06.2020-19.06.2020
DOI: 10.1109/CVPR42600.2020.00844
URL / URN: https://openaccess.thecvf.com/content_CVPR_2020/papers/Bhatt...
Kurzbeschreibung (Abstract):

Flow-based generative models are an important class of exact inference models that admit efficient inference and sampling for image synthesis. Owing to the efficiency constraints on the design of the flow layers, e.g. split coupling flow layers in which approximately half the pixels do not undergo further transformations, they have limited expressiveness for modeling long-range data dependencies compared to autoregressive models that rely on conditional pixel-wise generation. In this work, we improve the representational power of flow-based models by introducing channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR). Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data. The resulting model achieves state-of-the-art density estimation results on MNIST, CIFAR-10, and ImageNet. Furthermore, we show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Visuelle Inferenz
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 08 Mär 2022 07:50
Letzte Änderung: 08 Mär 2022 07:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen