TU Darmstadt / ULB / TUbiblio

Biotite: a unifying open source computational biology framework in Python

Kunzmann, Patrick ; Hamacher, Kay (2022)
Biotite: a unifying open source computational biology framework in Python.
In: BMC Bioinformatics, 2022, 19
doi: 10.26083/tuprints-00012854
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Background: As molecular biology is creating an increasing amount of sequence and structure data, the multitude of software to analyze this data is also rising. Most of the programs are made for a specific task, hence the user often needs to combine multiple programs in order to reach a goal. This can make the data processing unhandy, inflexible and even inefficient due to an overhead of read/write operations. Therefore, it is crucial to have a comprehensive, accessible and efficient computational biology framework in a scripting language to overcome these limitations. Results: We have developed the Python package Biotite: a general computational biology framework, that represents sequence and structure data based on NumPy ndarrays. Furthermore the package contains seamless interfaces to biological databases and external software. The source code is freely accessible at https://github.com/biotite-dev/biotite. Conclusions: Biotite is unifying in two ways: At first it bundles popular tasks in sequence analysis and structural bioinformatics in a consistently structured package. Secondly it adresses two groups of users: novice programmers get an easy access to Biotite due to its simplicity and the comprehensive documentation. On the other hand, advanced users can profit from its high performance and extensibility. They can implement their algorithms upon Biotite, so they can skip writing code for general functionality (like file parsers) and can focus on what their software makes unique.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Kunzmann, Patrick ; Hamacher, Kay
Art des Eintrags: Zweitveröffentlichung
Titel: Biotite: a unifying open source computational biology framework in Python
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: BMC Bioinformatics
Jahrgang/Volume einer Zeitschrift: 19
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00012854
URL / URN: https://tuprints.ulb.tu-darmstadt.de/12854
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus Golden Open Access
Kurzbeschreibung (Abstract):

Background: As molecular biology is creating an increasing amount of sequence and structure data, the multitude of software to analyze this data is also rising. Most of the programs are made for a specific task, hence the user often needs to combine multiple programs in order to reach a goal. This can make the data processing unhandy, inflexible and even inefficient due to an overhead of read/write operations. Therefore, it is crucial to have a comprehensive, accessible and efficient computational biology framework in a scripting language to overcome these limitations. Results: We have developed the Python package Biotite: a general computational biology framework, that represents sequence and structure data based on NumPy ndarrays. Furthermore the package contains seamless interfaces to biological databases and external software. The source code is freely accessible at https://github.com/biotite-dev/biotite. Conclusions: Biotite is unifying in two ways: At first it bundles popular tasks in sequence analysis and structural bioinformatics in a consistently structured package. Secondly it adresses two groups of users: novice programmers get an easy access to Biotite due to its simplicity and the comprehensive documentation. On the other hand, advanced users can profit from its high performance and extensibility. They can implement their algorithms upon Biotite, so they can skip writing code for general functionality (like file parsers) and can focus on what their software makes unique.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-128546
Zusätzliche Informationen:

Keywords: Open source, Python, NumPy, Structural biology, Sequence analysis

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Computational Biology and Simulation
Hinterlegungsdatum: 01 Mär 2022 13:26
Letzte Änderung: 02 Mär 2022 07:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen