TU Darmstadt / ULB / TUbiblio

hoDCA: higher order direct-coupling analysis

Schmidt, Michael ; Hamacher, Kay (2022)
hoDCA: higher order direct-coupling analysis.
In: BMC Bioinformatics, 2018, 19
doi: 10.26083/tuprints-00012863
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Background: Direct-coupling analysis (DCA) is a method for protein contact prediction from sequence information alone. Its underlying principle is parameter estimation for a Hamiltonian interaction function stemming from a maximum entropy model with one- and two-point interactions. Vastly growing sequence databases enable the construction of large multiple sequence alignments (MSA). Thus, enough data exists to include higher order terms, such as three-body correlations.

Results: We present an implementation of hoDCA, which is an extension of DCA by including three-body interactions into the inverse Ising problem posed by parameter estimation. In a previous study, these three-body-interactions improved contact prediction accuracy for the PSICOV benchmark dataset. Our implementation can be executed in parallel, which results in fast runtimes and makes it suitable for large-scale application.

Conclusion: Our hoDCA software allows improved contact prediction using the Julia language, leveraging power of multi-core machines in an automated fashion.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Schmidt, Michael ; Hamacher, Kay
Art des Eintrags: Zweitveröffentlichung
Titel: hoDCA: higher order direct-coupling analysis
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: BMC Bioinformatics
Jahrgang/Volume einer Zeitschrift: 19
Kollation: 5 Seiten
DOI: 10.26083/tuprints-00012863
URL / URN: https://tuprints.ulb.tu-darmstadt.de/12863
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Background: Direct-coupling analysis (DCA) is a method for protein contact prediction from sequence information alone. Its underlying principle is parameter estimation for a Hamiltonian interaction function stemming from a maximum entropy model with one- and two-point interactions. Vastly growing sequence databases enable the construction of large multiple sequence alignments (MSA). Thus, enough data exists to include higher order terms, such as three-body correlations.

Results: We present an implementation of hoDCA, which is an extension of DCA by including three-body interactions into the inverse Ising problem posed by parameter estimation. In a previous study, these three-body-interactions improved contact prediction accuracy for the PSICOV benchmark dataset. Our implementation can be executed in parallel, which results in fast runtimes and makes it suitable for large-scale application.

Conclusion: Our hoDCA software allows improved contact prediction using the Julia language, leveraging power of multi-core machines in an automated fashion.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-128630
Zusätzliche Informationen:

Keywords: Contact prediction, Proteins, DCA

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Computational Biology and Simulation
Hinterlegungsdatum: 01 Mär 2022 13:28
Letzte Änderung: 02 Mär 2022 07:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen