TU Darmstadt / ULB / TUbiblio

Material properties and performance of ErAs:In(Al)GaAs photoconductors for 1550 nm laser operation

Nandi, Uttam ; Mohammadi, Mahdad ; Lu, Hong ; Norman, Justin ; Gossard, Arthur C. ; Alff, Lambert ; Preu, Sascha (2022)
Material properties and performance of ErAs:In(Al)GaAs photoconductors for 1550 nm laser operation.
In: Journal of Vacuum Science & Technology A, 2021, 39 (2)
doi: 10.26083/tuprints-00020601
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

ErAs:In(Al)GaAs photoconductors have proven to be outstanding devices for photonic terahertz (0.1–10 THz) generation and detection with previously reported sub-0.5 ps carrier lifetimes. We present the so far most detailed material characterization of these superlattices composed of ErAs, InGaAs, and InAlAs layers grown by molecular beam epitaxy. The variation of the material properties as a function of the ErAs concentration and the superlattice structure is discussed with focus on source materials. Infrared spectroscopy shows an absorption coefficient in the range of 4700–6600 cm⁻¹ at 1550 nm, with shallow absorption edges toward longer wavelengths caused by absorption of ErAs precipitates. IV characterization and Hall measurements show that samples with only 0.8 monolayers of electrically compensated ErAs precipitates (p-delta-doped at 5 x 10¹³ cm⁻²) and aluminum-containing spacer layers enable high dark resistance (~10–20 MΩ) and high breakdown field strengths beyond 100 kV/cm, corresponding to > 500 V for a 50 μm gap. With higher ErAs concentration of 1.6 ML (2.4 ML), the resistance decreases by a factor of ~40 (120) for an otherwise identical superlattice structure. We propose a theoretical model for calculation of the excess current generated due to heating and for the estimation of the photocurrent from the total illuminated current. The paper concludes with terahertz time-domain spectroscopy measurements demonstrating the strengths of the material system and validating the proposed model.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Nandi, Uttam ; Mohammadi, Mahdad ; Lu, Hong ; Norman, Justin ; Gossard, Arthur C. ; Alff, Lambert ; Preu, Sascha
Art des Eintrags: Zweitveröffentlichung
Titel: Material properties and performance of ErAs:In(Al)GaAs photoconductors for 1550 nm laser operation
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: AIP
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Vacuum Science & Technology A
Jahrgang/Volume einer Zeitschrift: 39
(Heft-)Nummer: 2
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00020601
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20601
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

ErAs:In(Al)GaAs photoconductors have proven to be outstanding devices for photonic terahertz (0.1–10 THz) generation and detection with previously reported sub-0.5 ps carrier lifetimes. We present the so far most detailed material characterization of these superlattices composed of ErAs, InGaAs, and InAlAs layers grown by molecular beam epitaxy. The variation of the material properties as a function of the ErAs concentration and the superlattice structure is discussed with focus on source materials. Infrared spectroscopy shows an absorption coefficient in the range of 4700–6600 cm⁻¹ at 1550 nm, with shallow absorption edges toward longer wavelengths caused by absorption of ErAs precipitates. IV characterization and Hall measurements show that samples with only 0.8 monolayers of electrically compensated ErAs precipitates (p-delta-doped at 5 x 10¹³ cm⁻²) and aluminum-containing spacer layers enable high dark resistance (~10–20 MΩ) and high breakdown field strengths beyond 100 kV/cm, corresponding to > 500 V for a 50 μm gap. With higher ErAs concentration of 1.6 ML (2.4 ML), the resistance decreases by a factor of ~40 (120) for an otherwise identical superlattice structure. We propose a theoretical model for calculation of the excess current generated due to heating and for the estimation of the photocurrent from the total illuminated current. The paper concludes with terahertz time-domain spectroscopy measurements demonstrating the strengths of the material system and validating the proposed model.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-206014
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Mikrowellentechnik und Photonik (IMP)
Hinterlegungsdatum: 16 Feb 2022 13:43
Letzte Änderung: 17 Feb 2022 06:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen