TU Darmstadt / ULB / TUbiblio

Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics

Acosta, Matias ; Schmitt, Ljubomira A. ; Cazorla, Claudio ; Studer, Andrew ; Zintler, Alexander ; Glaum, Julia ; Kleebe, Hans‐Joachim ; Donner, Wolfgang ; Hoffman, Mark ; Rödel, Jürgen ; Hinterstein, Manuel (2022)
Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics.
In: Scientific Reports, 2016, 6 (1)
doi: 10.26083/tuprints-00020489
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction,〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For〈hhh〉oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Acosta, Matias ; Schmitt, Ljubomira A. ; Cazorla, Claudio ; Studer, Andrew ; Zintler, Alexander ; Glaum, Julia ; Kleebe, Hans‐Joachim ; Donner, Wolfgang ; Hoffman, Mark ; Rödel, Jürgen ; Hinterstein, Manuel
Art des Eintrags: Zweitveröffentlichung
Titel: Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2016
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 1
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00020489
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20489
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction,〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For〈hhh〉oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-204891
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 16 Feb 2022 13:26
Letzte Änderung: 17 Feb 2022 06:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen