TU Darmstadt / ULB / TUbiblio

Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics

Acosta, Matias ; Schmitt, Ljubomira A. ; Cazorla, Claudio ; Studer, Andrew ; Zintler, Alexander ; Glaum, Julia ; Kleebe, Hans-Joachim ; Donner, Wolfgang ; Hoffman, Mark ; Rödel, Jürgen ; Hinterstein, Manuel :
Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics.
[Online-Edition: https://doi.org/10.1038/srep28742]
In: Scientific Reports, 6 (1) 10.1063/1.4936784. ISSN 2045-2322
[Artikel], (2016)

Offizielle URL: https://doi.org/10.1038/srep28742

Kurzbeschreibung (Abstract)

Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, 〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For 〈hhh〉 oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Acosta, Matias ; Schmitt, Ljubomira A. ; Cazorla, Claudio ; Studer, Andrew ; Zintler, Alexander ; Glaum, Julia ; Kleebe, Hans-Joachim ; Donner, Wolfgang ; Hoffman, Mark ; Rödel, Jürgen ; Hinterstein, Manuel
Titel: Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics
Sprache: Englisch
Kurzbeschreibung (Abstract):

Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, 〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For 〈hhh〉 oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Band: 6
(Heft-)Nummer: 1
Verlag: Nature Research
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 11 Jul 2017 11:41
Offizielle URL: https://doi.org/10.1038/srep28742
ID-Nummer: doi:10.1038/srep28742
Sponsoren: The work and the in situ TEM experiments were supported by the Deutsche Forschungsgemeinschaft (DFG) Leibniz program under RO954/22-1, Emmy Noether Research Group HI1867/1-1 and SFB595., Further founds were obtained from the Bundesministerium fuer Bildung und Forschung (BMBF) (Grant No. 05K13VK1), the Feodor Lynen Research Fellowship Program of the Alexander von Humboldt Foundation., Further founds were obtained from the EU call H2020-MSCA-IF-2014 under grant number 655866 and the Australian Research Council under grant numbers DP150104649, DE120102644, DE150100750, and FT140100135.
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen