TU Darmstadt / ULB / TUbiblio

Detecting When Pre-trained nnU-Net Models Fail Silently for Covid-19 Lung Lesion Segmentation

Gonzalez, Camila ; Gotkowski, Karol ; Bucher, Andreas ; Fischbach, Ricarda ; Kaltenborn, Isabel ; Mukhopadhyay, Anirban (2021)
Detecting When Pre-trained nnU-Net Models Fail Silently for Covid-19 Lung Lesion Segmentation.
24th International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France (27.09.2021-01.10.2021)
doi: 10.1007/978-3-030-87234-2_29
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Automatic segmentation of lung lesions in computer tomography has the potential to ease the burden of clinicians during the Covid-19 pandemic. Yet predictive deep learning models are not trusted in the clinical routine due to failing silently in out-of-distribution (OOD) data. We propose a lightweight OOD detection method that exploits the Mahalanobis distance in the feature space. The proposed approach can be seamlessly integrated into state-of-the-art segmentation pipelines without requiring changes in model architecture or training procedure, and can therefore be used to assess the suitability of pre-trained models to new data. We validate our method with a patch-based nnU-Net architecture trained with a multi-institutional dataset and find that it effectively detects samples that the model segments incorrectly.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Gonzalez, Camila ; Gotkowski, Karol ; Bucher, Andreas ; Fischbach, Ricarda ; Kaltenborn, Isabel ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Detecting When Pre-trained nnU-Net Models Fail Silently for Covid-19 Lung Lesion Segmentation
Sprache: Englisch
Publikationsjahr: 2021
Verlag: Springer
Buchtitel: Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 12907
Veranstaltungstitel: 24th International Conference on Medical Image Computing and Computer-Assisted Intervention
Veranstaltungsort: Strasbourg, France
Veranstaltungsdatum: 27.09.2021-01.10.2021
DOI: 10.1007/978-3-030-87234-2_29
Kurzbeschreibung (Abstract):

Automatic segmentation of lung lesions in computer tomography has the potential to ease the burden of clinicians during the Covid-19 pandemic. Yet predictive deep learning models are not trusted in the clinical routine due to failing silently in out-of-distribution (OOD) data. We propose a lightweight OOD detection method that exploits the Mahalanobis distance in the feature space. The proposed approach can be seamlessly integrated into state-of-the-art segmentation pipelines without requiring changes in model architecture or training procedure, and can therefore be used to assess the suitability of pre-trained models to new data. We validate our method with a patch-based nnU-Net architecture trained with a multi-institutional dataset and find that it effectively detects samples that the model segments incorrectly.

Zusätzliche Informationen:

Proceedings, Part VII

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Feb 2022 08:25
Letzte Änderung: 16 Feb 2022 08:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen