TU Darmstadt / ULB / TUbiblio

Data-Based Quality Analysis in Machining Production: Influence of Data Pre-Processing on the Results of Machine Learning Models

Ziegenbein, Amina ; Metternich, Joachim (2021)
Data-Based Quality Analysis in Machining Production: Influence of Data Pre-Processing on the Results of Machine Learning Models.
In: Procedia CIRP, 104
doi: 10.1016/j.procir.2021.11.146
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Quality assurance as a non-value-adding process is constantly reviewed for cost optimisation and potential savings. In the pursuit of utilising advanced data analysis and machine learning methods to improve efficiency of quality assurance in machining processes there are several influencing factors severely impacting the performance and hence the value of said methods. Especially data preparation is a time consuming task requiring both domain and data expert knowledge and yielding various options for data preparation. In this paper, the impact of different input data sets for predicting part quality in a drilling process is investigated, using machine control data.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Ziegenbein, Amina ; Metternich, Joachim
Art des Eintrags: Bibliographie
Titel: Data-Based Quality Analysis in Machining Production: Influence of Data Pre-Processing on the Results of Machine Learning Models
Sprache: Englisch
Publikationsjahr: 26 November 2021
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 104
DOI: 10.1016/j.procir.2021.11.146
Kurzbeschreibung (Abstract):

Quality assurance as a non-value-adding process is constantly reviewed for cost optimisation and potential savings. In the pursuit of utilising advanced data analysis and machine learning methods to improve efficiency of quality assurance in machining processes there are several influencing factors severely impacting the performance and hence the value of said methods. Especially data preparation is a time consuming task requiring both domain and data expert knowledge and yielding various options for data preparation. In this paper, the impact of different input data sets for predicting part quality in a drilling process is investigated, using machine control data.

Freie Schlagworte: Drilling, Machine learning, Part Quality
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
Hinterlegungsdatum: 26 Jan 2022 07:09
Letzte Änderung: 26 Jan 2022 07:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen