TU Darmstadt / ULB / TUbiblio

Machine Learning Use Case in Manufacturing — An Evaluation of the Model's Reliability from an IT Security Perspective

Bretones Cassoli, Beatriz ; Ziegenbein, Amina ; Metternich, Joachim ; Đukanović, Siniša ; Hachenberger, Julien ; Laabs, Martin (2021)
Machine Learning Use Case in Manufacturing — An Evaluation of the Model's Reliability from an IT Security Perspective.
In: Procedia CIRP, 104
doi: 10.1016/j.procir.2021.11.195
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The use of Machine Learning (ML) solutions for decision automation in manufacturing environments is critical if operators trust ML-predictions without critically questioning them. The vulnerability of ML-applications to data manipulation, data-poisoning and adversarial examples raise concerns about its reliability and security. This paper evaluates an on-edge predictive maintenance solution through an IT security perspective, showing how the model's forecasting can be affected by intentional data manipulation and thus identifying the system's vulnerabilities for this particular use case. It concludes with suggestions on how to mitigate threats and manage risks.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Bretones Cassoli, Beatriz ; Ziegenbein, Amina ; Metternich, Joachim ; Đukanović, Siniša ; Hachenberger, Julien ; Laabs, Martin
Art des Eintrags: Bibliographie
Titel: Machine Learning Use Case in Manufacturing — An Evaluation of the Model's Reliability from an IT Security Perspective
Sprache: Englisch
Publikationsjahr: 26 November 2021
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 104
DOI: 10.1016/j.procir.2021.11.195
Kurzbeschreibung (Abstract):

The use of Machine Learning (ML) solutions for decision automation in manufacturing environments is critical if operators trust ML-predictions without critically questioning them. The vulnerability of ML-applications to data manipulation, data-poisoning and adversarial examples raise concerns about its reliability and security. This paper evaluates an on-edge predictive maintenance solution through an IT security perspective, showing how the model's forecasting can be affected by intentional data manipulation and thus identifying the system's vulnerabilities for this particular use case. It concludes with suggestions on how to mitigate threats and manage risks.

Freie Schlagworte: Artificial Intelligence, IT Security, Predictive Maintenance
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
Hinterlegungsdatum: 26 Jan 2022 07:06
Letzte Änderung: 28 Jan 2022 13:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen