TU Darmstadt / ULB / TUbiblio

Ionic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm

Janissek, Alexander ; Lenz, Jakob ; Giudice, Fabio del ; Gaulke, Marco ; Pyatkov, Felix ; Dehm, Simone ; Hennrich, Frank ; Wei, Li ; Chen, Yuan ; Fediai, Artem ; Kappes, Manfred ; Wenzel, Wolfgang ; Krupke, Ralph ; Weitz, R. Thomas (2021)
Ionic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm.
In: Applied Physics Letters, 118 (6)
doi: 10.1063/5.0034792
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Ionic liquids enable efficient gating of materials with nanoscale morphology due to the formation of a nanoscale double layer that can also follow strongly vaulted surfaces. On carbon nanotubes, this can lead to the formation of a cylindrical gate layer, allowing an ideal control of the drain current even at small gate voltages. In this work, we apply ionic liquid gating to chirality-sorted (9, 8) carbon nanotubes bridging metallic electrodes with gap sizes of 20 nm and 10 nm. The single-tube devices exhibit diameter-normalized current densities of up to 2.57 mA/μm, on-off ratios up to 104, and a subthreshold swing down to 100 mV/dec. Measurements after long vacuum storage indicate that the hysteresis of ionic liquid gated devices depends not only on the gate voltage sweep rate and the polarization dynamics but also on charge traps in the vicinity of the carbon nanotube, which, in turn, might act as trap states for the ionic liquid ions. The ambipolar transfer characteristics are compared with calculations based on the Landauer–Büttiker formalism. Qualitative agreement is demonstrated, and the possible reasons for quantitative deviations and possible improvements to the model are discussed. Besides being of fundamental interest, the results have potential relevance for biosensing applications employing high-density device arrays. F.P. and R.K. acknowledge funding from the Volkswagen Foundation. M.G., F.H., M.M.K., F.P., and R.K. acknowledge support of the Helmholtz Association of German Research Centers (HGF) and of the Karlsruhe Nano Micro Facility (KNMF). A.F and W.W. acknowledge funding from the DFG (No. WE 1863/29-1). J. L. and R.T.W. acknowledge funding from the Nanosystems Initiative Munich (NIM), the Center for Nanoscience (CeNS), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC-2111-390814868 (MCQST). Y.C. acknowledges the Australian Research Council for funding support (No. FT160100107).

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Janissek, Alexander ; Lenz, Jakob ; Giudice, Fabio del ; Gaulke, Marco ; Pyatkov, Felix ; Dehm, Simone ; Hennrich, Frank ; Wei, Li ; Chen, Yuan ; Fediai, Artem ; Kappes, Manfred ; Wenzel, Wolfgang ; Krupke, Ralph ; Weitz, R. Thomas
Art des Eintrags: Bibliographie
Titel: Ionic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm
Sprache: Englisch
Publikationsjahr: 8 Februar 2021
Verlag: American Institute of Physics (AIP)
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Physics Letters
Jahrgang/Volume einer Zeitschrift: 118
(Heft-)Nummer: 6
DOI: 10.1063/5.0034792
URL / URN: https://aip.scitation.org/doi/10.1063/5.0034792
Kurzbeschreibung (Abstract):

Ionic liquids enable efficient gating of materials with nanoscale morphology due to the formation of a nanoscale double layer that can also follow strongly vaulted surfaces. On carbon nanotubes, this can lead to the formation of a cylindrical gate layer, allowing an ideal control of the drain current even at small gate voltages. In this work, we apply ionic liquid gating to chirality-sorted (9, 8) carbon nanotubes bridging metallic electrodes with gap sizes of 20 nm and 10 nm. The single-tube devices exhibit diameter-normalized current densities of up to 2.57 mA/μm, on-off ratios up to 104, and a subthreshold swing down to 100 mV/dec. Measurements after long vacuum storage indicate that the hysteresis of ionic liquid gated devices depends not only on the gate voltage sweep rate and the polarization dynamics but also on charge traps in the vicinity of the carbon nanotube, which, in turn, might act as trap states for the ionic liquid ions. The ambipolar transfer characteristics are compared with calculations based on the Landauer–Büttiker formalism. Qualitative agreement is demonstrated, and the possible reasons for quantitative deviations and possible improvements to the model are discussed. Besides being of fundamental interest, the results have potential relevance for biosensing applications employing high-density device arrays. F.P. and R.K. acknowledge funding from the Volkswagen Foundation. M.G., F.H., M.M.K., F.P., and R.K. acknowledge support of the Helmholtz Association of German Research Centers (HGF) and of the Karlsruhe Nano Micro Facility (KNMF). A.F and W.W. acknowledge funding from the DFG (No. WE 1863/29-1). J. L. and R.T.W. acknowledge funding from the Nanosystems Initiative Munich (NIM), the Center for Nanoscience (CeNS), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC-2111-390814868 (MCQST). Y.C. acknowledges the Australian Research Council for funding support (No. FT160100107).

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Molekulare Nanostrukturen
Hinterlegungsdatum: 01 Okt 2021 06:29
Letzte Änderung: 01 Okt 2021 06:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen