TU Darmstadt / ULB / TUbiblio

Comparison and Evaluation of Integrity Algorithms for Vehicle Dynamic State Estimation in Different Scenarios for an Application in Automated Driving

Gottschalg, Grischa ; Leinen, Stefan (2021)
Comparison and Evaluation of Integrity Algorithms for Vehicle Dynamic State Estimation in Different Scenarios for an Application in Automated Driving.
In: Sensors, 2021, 21 (4)
doi: 10.26083/tuprints-00019274
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

High-integrity information about the vehicle’s dynamic state, including position and heading (yaw angle), is required in order to implement automated driving functions. In this work, a comparison of three integrity algorithms for the vehicle dynamic state estimation of a research vehicle for an application in automated driving is presented. Requirements for this application are derived from the literature. All implemented integrity algorithms output a protection level for the position and heading solution. In the comparison, four measurement data sets obtained for the vehicle dynamic state estimation, which is based on a Global Navigation Satellite Signal receiver, inertial measurement units and odometry information (wheel speeds and steering angles), are used. The data sets represent four driving scenarios with different environmental conditions, especially regarding the satellite signal reception. All in all, the Kalman Integrated Protection Level demonstrated the best performance out of the three implemented integrity algorithms. Its protection level bounds the position error within the specified integrity risk in all four chosen scenarios. For the heading error, this also holds true, with a slight exception in the very challenging urban scenario.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Gottschalg, Grischa ; Leinen, Stefan
Art des Eintrags: Zweitveröffentlichung
Titel: Comparison and Evaluation of Integrity Algorithms for Vehicle Dynamic State Estimation in Different Scenarios for an Application in Automated Driving
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 4
Kollation: 22 Seiten
DOI: 10.26083/tuprints-00019274
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19274
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

High-integrity information about the vehicle’s dynamic state, including position and heading (yaw angle), is required in order to implement automated driving functions. In this work, a comparison of three integrity algorithms for the vehicle dynamic state estimation of a research vehicle for an application in automated driving is presented. Requirements for this application are derived from the literature. All implemented integrity algorithms output a protection level for the position and heading solution. In the comparison, four measurement data sets obtained for the vehicle dynamic state estimation, which is based on a Global Navigation Satellite Signal receiver, inertial measurement units and odometry information (wheel speeds and steering angles), are used. The data sets represent four driving scenarios with different environmental conditions, especially regarding the satellite signal reception. All in all, the Kalman Integrated Protection Level demonstrated the best performance out of the three implemented integrity algorithms. Its protection level bounds the position error within the specified integrity risk in all four chosen scenarios. For the heading error, this also holds true, with a slight exception in the very challenging urban scenario.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-192748
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
Hinterlegungsdatum: 09 Aug 2021 07:59
Letzte Änderung: 17 Aug 2021 06:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen