TU Darmstadt / ULB / TUbiblio

Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells

Bermúdez Agudelo, María Catalina ; Hampe, Manfred ; Reiber, Thorsten ; Abele, Eberhard (2020)
Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells.
In: Materials, 13 (9)
doi: 10.3390/ma13092096
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

A high-temperature proton exchange membrane fuel cell (HT-PEMFC) conventionally uses a planar design with carbon-based substrates as the gas diffusion layer (GDL) materials. However, the metal-based substrates allow for alternative designs. In this study, the applicability of porous thin-walled tubular elements made of 316L stainless steel as the anode GDL in a multi-layer tubular HT-PEMFC was investigated. The anode GDLs were fabricated via powder bed fusion using a laser beam (PBF-LB) process with defined porosities (14% and 16%). The morphology of the porous elements was compared using scanning electron microscopy (SEM) micrographs. The influence of the porosity on the fuel cell performance was evaluated through electrochemical characterization and a short-term stability test (45 h) in a commercial test station operated at 160 °C and ambient pressure, using hydrogen as the fuel and air as the oxidant. The results showed that the fuel cell manufactured upon the anode GDL with a porosity of 16% had a higher performance with a peak power density of 329.25 W/m2 after 5 h of operation at 125.52 A/m2 and a voltage degradation rate of 0.511 mV/h over the stability test period. Moreover, this work indicates that additive manufacturing could be a useful tool for further fuel cell development.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Bermúdez Agudelo, María Catalina ; Hampe, Manfred ; Reiber, Thorsten ; Abele, Eberhard
Art des Eintrags: Bibliographie
Titel: Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells
Sprache: Englisch
Publikationsjahr: 1 Mai 2020
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 9
DOI: 10.3390/ma13092096
URL / URN: https://www.mdpi.com/1996-1944/13/9/2096
Zugehörige Links:
Kurzbeschreibung (Abstract):

A high-temperature proton exchange membrane fuel cell (HT-PEMFC) conventionally uses a planar design with carbon-based substrates as the gas diffusion layer (GDL) materials. However, the metal-based substrates allow for alternative designs. In this study, the applicability of porous thin-walled tubular elements made of 316L stainless steel as the anode GDL in a multi-layer tubular HT-PEMFC was investigated. The anode GDLs were fabricated via powder bed fusion using a laser beam (PBF-LB) process with defined porosities (14% and 16%). The morphology of the porous elements was compared using scanning electron microscopy (SEM) micrographs. The influence of the porosity on the fuel cell performance was evaluated through electrochemical characterization and a short-term stability test (45 h) in a commercial test station operated at 160 °C and ambient pressure, using hydrogen as the fuel and air as the oxidant. The results showed that the fuel cell manufactured upon the anode GDL with a porosity of 16% had a higher performance with a peak power density of 329.25 W/m2 after 5 h of operation at 125.52 A/m2 and a voltage degradation rate of 0.511 mV/h over the stability test period. Moreover, this work indicates that additive manufacturing could be a useful tool for further fuel cell development.

Freie Schlagworte: Additive manufacturing, gas diusion layer (GDL), high-temperature proton exchange membrane fuel cell (HT-PEMFC), MEA preparation, porosity, powder bed fusion using a laser beam (PBF-LB), tubular design
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Additive Fertigung und Dentale Technologie (2021 aufgegangen in TEC Fertigungstechnologie)
Hinterlegungsdatum: 16 Aug 2021 06:17
Letzte Änderung: 21 Nov 2023 07:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen