Gurevych, Iryna ; Daxenberger, Johannes (2021)
ArgumenText: Entscheidungsunterstützung durch die automatische Extraktion von Argumenten aus großen Textquellen (Schlussbericht).
doi: 10.26083/tuprints-00018663
Report, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
Alle relevanten Gründe für eine Entscheidung zu berücksichtigen ist aufgrund der vorherrschenden Informationsflut u.a. im Internet zunehmend schwieriger. Existierende Technologien wie Suchmaschinen unterstützen den Entscheidungsprozess zwar, die relevanten Argumente in den Dokumenten gehen dabei aber verloren. Das Validierungsprojekt ArgumenText hat sich zum Ziel gesetzt, mittels automatischer Extraktion von Argumenten aus großen Textquellen Entscheidungen oder Wissensgenerierungsprozesse effektiv und effizient zu unterstützen. Dabei konnte auf Methoden zur Argumentextraktion aus vorangegangener Grundlagenforschung, die Behauptungen und Begründungen in einzelnen Textdokumenten erkennen, zurückgegriffen werden. Im Rahmen der VIP+ Validierungsförderung stand insbesondere die Erarbeitung einer vielversprechenden Verwertungsstrategie im Vordergrund. Entsprechend war das ArgumenText Arbeitsprogramm und Projektmanagement ausgerichtet auf die Definition von Anwendungsfällen, in denen eine Methodenadaption und Evaluation der Technologie stattfand. Inhaltlich wurden insbesondere Durchbrüche erzielt bei der Argumentextraktion aus heterogenen Textquellen (es wurde ein flexibles Schema geschaffen, das Pro- und Kontra-Argumente immer mit Bezug auf ein gegebenes Thema definiert) sowie der Argumentextraktion aus massiv großen Datenbeständen (es wurde ein zweistufiges Verfahren geschaffen, welches in Echtzeit zunächst Dokumente nach Relevanz zum Thema und dann innerhalb dieser Dokumente nach passenden Argumenten sucht). Außerdem wurde ein Verfahren zur Argumentgruppierung anhand argumentativer Aspekte entwickelt. Im Rahmen der Validierung wurde der Anwendungsfall Journalismus aufgrund mangelnder Verwertungschancen zugunsten des Anwendungsfall Kaufentscheidung verworfen. Letzterer wurde, getrieben durch die Ergebnisse der Evaluationsstudien, Marktanalysen und rechtlichen Gutachten unterteilt in die Fälle Innovations- und Technologiebewertung sowie Kundenfeedbackanalyse. Zur wirtschaftlichen Verwertung konnte im Rahmen des EXIST Programms des BMWi erfolgreich eine Anschlussfinanzierung für eine Unternehmensgründung eingeworben werden.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2021 |
Autor(en): | Gurevych, Iryna ; Daxenberger, Johannes |
Art des Eintrags: | Erstveröffentlichung |
Titel: | ArgumenText: Entscheidungsunterstützung durch die automatische Extraktion von Argumenten aus großen Textquellen (Schlussbericht) |
Sprache: | Deutsch |
Publikationsjahr: | 2021 |
Ort: | Darmstadt |
Kollation: | 27 Seiten |
DOI: | 10.26083/tuprints-00018663 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/18663 |
Kurzbeschreibung (Abstract): | Alle relevanten Gründe für eine Entscheidung zu berücksichtigen ist aufgrund der vorherrschenden Informationsflut u.a. im Internet zunehmend schwieriger. Existierende Technologien wie Suchmaschinen unterstützen den Entscheidungsprozess zwar, die relevanten Argumente in den Dokumenten gehen dabei aber verloren. Das Validierungsprojekt ArgumenText hat sich zum Ziel gesetzt, mittels automatischer Extraktion von Argumenten aus großen Textquellen Entscheidungen oder Wissensgenerierungsprozesse effektiv und effizient zu unterstützen. Dabei konnte auf Methoden zur Argumentextraktion aus vorangegangener Grundlagenforschung, die Behauptungen und Begründungen in einzelnen Textdokumenten erkennen, zurückgegriffen werden. Im Rahmen der VIP+ Validierungsförderung stand insbesondere die Erarbeitung einer vielversprechenden Verwertungsstrategie im Vordergrund. Entsprechend war das ArgumenText Arbeitsprogramm und Projektmanagement ausgerichtet auf die Definition von Anwendungsfällen, in denen eine Methodenadaption und Evaluation der Technologie stattfand. Inhaltlich wurden insbesondere Durchbrüche erzielt bei der Argumentextraktion aus heterogenen Textquellen (es wurde ein flexibles Schema geschaffen, das Pro- und Kontra-Argumente immer mit Bezug auf ein gegebenes Thema definiert) sowie der Argumentextraktion aus massiv großen Datenbeständen (es wurde ein zweistufiges Verfahren geschaffen, welches in Echtzeit zunächst Dokumente nach Relevanz zum Thema und dann innerhalb dieser Dokumente nach passenden Argumenten sucht). Außerdem wurde ein Verfahren zur Argumentgruppierung anhand argumentativer Aspekte entwickelt. Im Rahmen der Validierung wurde der Anwendungsfall Journalismus aufgrund mangelnder Verwertungschancen zugunsten des Anwendungsfall Kaufentscheidung verworfen. Letzterer wurde, getrieben durch die Ergebnisse der Evaluationsstudien, Marktanalysen und rechtlichen Gutachten unterteilt in die Fälle Innovations- und Technologiebewertung sowie Kundenfeedbackanalyse. Zur wirtschaftlichen Verwertung konnte im Rahmen des EXIST Programms des BMWi erfolgreich eine Anschlussfinanzierung für eine Unternehmensgründung eingeworben werden. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-186632 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
TU-Projekte: | PTJ|03VP02540|ArgumenText |
Hinterlegungsdatum: | 30 Jul 2021 07:37 |
Letzte Änderung: | 03 Aug 2021 06:59 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |