TU Darmstadt / ULB / TUbiblio

Surgical phase recognition by learning phase transitions

Sahu, Manish ; Szengel, Angelika ; Mukhopadhyay, Anirban ; Zachow, Stefan (2020)
Surgical phase recognition by learning phase transitions.
In: Current Directions in Biomedical Engineering, 6 (1)
doi: 10.1515/cdbme-2020-0037
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Automatic recognition of surgical phases is an important component for developing an intra-operative context-aware system. Prior work in this area focuses on recognizing short-term tool usage patterns within surgical phases. However, the difference between intra- and interphase tool usage patterns has not been investigated for automatic phase recognition. We developed a Recurrent Neural Network (RNN), in particular a state-preserving Long Short Term Memory (LSTM) architecture to utilize the long-term evolution of tool usage within complete surgical procedures. For fully automatic tool presence detection from surgical video frames, a Convolutional Neural Network (CNN) based architecture namely ZIBNet is employed. Our proposed approach outperformed EndoNet by 8.1% on overall precision for phase detection tasks and 12.5% on meanAP for tool recognition tasks.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Sahu, Manish ; Szengel, Angelika ; Mukhopadhyay, Anirban ; Zachow, Stefan
Art des Eintrags: Bibliographie
Titel: Surgical phase recognition by learning phase transitions
Sprache: Englisch
Publikationsjahr: 17 September 2020
Verlag: De Gruyter
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Current Directions in Biomedical Engineering
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 1
DOI: 10.1515/cdbme-2020-0037
Kurzbeschreibung (Abstract):

Automatic recognition of surgical phases is an important component for developing an intra-operative context-aware system. Prior work in this area focuses on recognizing short-term tool usage patterns within surgical phases. However, the difference between intra- and interphase tool usage patterns has not been investigated for automatic phase recognition. We developed a Recurrent Neural Network (RNN), in particular a state-preserving Long Short Term Memory (LSTM) architecture to utilize the long-term evolution of tool usage within complete surgical procedures. For fully automatic tool presence detection from surgical video frames, a Convolutional Neural Network (CNN) based architecture namely ZIBNet is employed. Our proposed approach outperformed EndoNet by 8.1% on overall precision for phase detection tasks and 12.5% on meanAP for tool recognition tasks.

Zusätzliche Informationen:

Art.No.: 20200037

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Dez 2020 08:18
Letzte Änderung: 16 Dez 2020 08:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen