TU Darmstadt / ULB / TUbiblio

AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation

Kügler, David ; Uecker, Marc ; Kuijper, Arjan ; Mukhopadhyay, Anirban (2020)
AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation.
23rd International Conference on Medical Image Computing an Computer-Assisted Intervention (MICCAI 2020). virtual Conference (04.10.2020-08.10.2020)
doi: 10.1007/978-3-030-59716-0_36
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Despite recent successes, the advances in Deep Learning have not yet been fully translated to Computer Assisted Intervention (CAI) problems such as pose estimation of surgical instruments. Currently, neural architectures for classification and segmentation tasks are adopted ignoring significant discrepancies between CAI and these tasks. We propose an automatic framework (AutoSNAP) for instrument pose estimation problems, which discovers and learns architectures for neural networks. We introduce 1) an efficient testing environment for pose estimation, 2) a powerful architecture representation based on novel Symbolic Neural Architecture Patterns (SNAPs), and 3) an optimization of the architecture using an efficient search scheme. Using AutoSNAP, we discover an improved architecture (SNAPNet) which outperforms both the hand-engineered i3PosNet and the state-of-the-art architecture search method DARTS.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Kügler, David ; Uecker, Marc ; Kuijper, Arjan ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation
Sprache: Englisch
Publikationsjahr: 2020
Verlag: Springer
Buchtitel: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
Veranstaltungstitel: 23rd International Conference on Medical Image Computing an Computer-Assisted Intervention (MICCAI 2020)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 04.10.2020-08.10.2020
DOI: 10.1007/978-3-030-59716-0_36
Kurzbeschreibung (Abstract):

Despite recent successes, the advances in Deep Learning have not yet been fully translated to Computer Assisted Intervention (CAI) problems such as pose estimation of surgical instruments. Currently, neural architectures for classification and segmentation tasks are adopted ignoring significant discrepancies between CAI and these tasks. We propose an automatic framework (AutoSNAP) for instrument pose estimation problems, which discovers and learns architectures for neural networks. We introduce 1) an efficient testing environment for pose estimation, 2) a powerful architecture representation based on novel Symbolic Neural Architecture Patterns (SNAPs), and 3) an optimization of the architecture using an efficient search scheme. Using AutoSNAP, we discover an improved architecture (SNAPNet) which outperforms both the hand-engineered i3PosNet and the state-of-the-art architecture search method DARTS.

Freie Schlagworte: Interventional techniques, Medical applications, Medical imaging, Deep learning
Zusätzliche Informationen:

Part of the Lecture Notes in Computer Science book series (LNCS, volume 12263)

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 19 Okt 2020 08:27
Letzte Änderung: 04 Dez 2020 08:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen