TU Darmstadt / ULB / TUbiblio

Data-Based Process Analysis in Machining Production: Case Study for Quality Determination in a Drilling Process

Ziegenbein, Amina ; Fertig, Alexander ; Metternich, Joachim ; Weigold, Matthias (2020)
Data-Based Process Analysis in Machining Production: Case Study for Quality Determination in a Drilling Process.
In: Procedia CIRP, 93
doi: 10.1016/j.procir.2020.03.063
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The rush of new providers of Industrial Internet of Things solutions and machine learning applications onto the market opens up new possibilities for data acquisition and analysis that go beyond the classical approach of model- and empirical-based process analysis. In this context, classic production tasks, e.g. quality assurance by random sampling, should be critically reviewed for their relevance. These non-value-adding activities can potentially be eliminated by disruptive digitalisation in order to increase labour productivity. This paper showcases the potential of a data-driven approach for quality determination in a drilling process using machine control data.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Ziegenbein, Amina ; Fertig, Alexander ; Metternich, Joachim ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Data-Based Process Analysis in Machining Production: Case Study for Quality Determination in a Drilling Process
Sprache: Englisch
Publikationsjahr: 29 September 2020
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 93
DOI: 10.1016/j.procir.2020.03.063
URL / URN: https://www.sciencedirect.com/science/article/pii/S221282712...
Kurzbeschreibung (Abstract):

The rush of new providers of Industrial Internet of Things solutions and machine learning applications onto the market opens up new possibilities for data acquisition and analysis that go beyond the classical approach of model- and empirical-based process analysis. In this context, classic production tasks, e.g. quality assurance by random sampling, should be critically reviewed for their relevance. These non-value-adding activities can potentially be eliminated by disruptive digitalisation in order to increase labour productivity. This paper showcases the potential of a data-driven approach for quality determination in a drilling process using machine control data.

Freie Schlagworte: Quality, Machine Learning, Drilling
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Zerspanungstechnologie (2021 aufgegangen in TEC Fertigungstechnologie)
Hinterlegungsdatum: 08 Okt 2020 06:06
Letzte Änderung: 08 Okt 2020 06:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen