Kreß, Klaus (2020)
Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00013505
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
The main objective of this thesis is the investigation of different models arising from mathematical biology and fluid mechanics in the time-periodic setting. We consider the classical Keller-Segel model for chemotaxis as well as its coupling to a fluid whose motion is described by the Navier-Stokes equations. The second model we investigate is the bidomain system which describes the propagation of electrophysiological waves in the heart. The last model considered is the Beris-Edwards model of nematic liquid crystals.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2020 | ||||
Autor(en): | Kreß, Klaus | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models | ||||
Sprache: | Englisch | ||||
Referenten: | Hieber, Prof. Dr. Matthias ; Farwig, Prof. Dr. Reinhard | ||||
Publikationsjahr: | 2020 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 13 Juli 2020 | ||||
DOI: | 10.25534/tuprints-00013505 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/13505 | ||||
Kurzbeschreibung (Abstract): | The main objective of this thesis is the investigation of different models arising from mathematical biology and fluid mechanics in the time-periodic setting. We consider the classical Keller-Segel model for chemotaxis as well as its coupling to a fluid whose motion is described by the Navier-Stokes equations. The second model we investigate is the bidomain system which describes the propagation of electrophysiological waves in the heart. The last model considered is the Beris-Edwards model of nematic liquid crystals. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-135050 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Analysis 04 Fachbereich Mathematik > Analysis > Angewandte Analysis 04 Fachbereich Mathematik > Analysis > Partielle Differentialgleichungen und Anwendungen |
||||
Hinterlegungsdatum: | 30 Sep 2020 11:26 | ||||
Letzte Änderung: | 06 Okt 2020 07:03 | ||||
PPN: | |||||
Referenten: | Hieber, Prof. Dr. Matthias ; Farwig, Prof. Dr. Reinhard | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 13 Juli 2020 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |