TU Darmstadt / ULB / TUbiblio

New ultra-high temperature nanoindentation system for operating at up to 1100 °C

Minnert, Christian ; Oliver, Warren C. ; Durst, Karsten (2020)
New ultra-high temperature nanoindentation system for operating at up to 1100 °C.
In: Materials & Design, 2020, 192
doi: 10.25534/tuprints-00013342
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this work a new ultra-high temperature (UHT) nanoindentation system for testing at up to 1100 °C is presented. The system is capable to perform indents fromsmall scale up to large indentation depths due to the combination of a 1 N actuator and a frame stiffness of N1 � 106 N� m even at 1100 °C. Dynamic testing allows a continuous determination of the contact stiffness (CSM) and thus also the depth-dependent hardness and indentation modulus. Low drift rates can be achieved by an independent tip and sample heating. Operating the nanoindenter inside a scanning electron microscope (SEM) equipped with a high temperature backscattered electron (BSE) detector opens the possibility of in-situ observations, as high vacuumminimizes oxidation effects. The HT capability of the systemis demonstrated on three reference materials: fused silica,molybdenumassessing the change in modulus with increasing temperature using constant strain rate tests (CSR). The creep response of single crystalline Ni has been assessed by strain rate jump (SRJ) as well as a step-load and hold creep (SLH) method. The resulting modulus, hardness as well as the strain rate sensitivity from RT up to 1100 °C are in good accordance with literature data, highlighting the applicability of the system.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Minnert, Christian ; Oliver, Warren C. ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: New ultra-high temperature nanoindentation system for operating at up to 1100 °C
Sprache: Englisch
Publikationsjahr: 2020
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 192
DOI: 10.25534/tuprints-00013342
URL / URN: https://tuprints.ulb.tu-darmstadt.de/13342
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

In this work a new ultra-high temperature (UHT) nanoindentation system for testing at up to 1100 °C is presented. The system is capable to perform indents fromsmall scale up to large indentation depths due to the combination of a 1 N actuator and a frame stiffness of N1 � 106 N� m even at 1100 °C. Dynamic testing allows a continuous determination of the contact stiffness (CSM) and thus also the depth-dependent hardness and indentation modulus. Low drift rates can be achieved by an independent tip and sample heating. Operating the nanoindenter inside a scanning electron microscope (SEM) equipped with a high temperature backscattered electron (BSE) detector opens the possibility of in-situ observations, as high vacuumminimizes oxidation effects. The HT capability of the systemis demonstrated on three reference materials: fused silica,molybdenumassessing the change in modulus with increasing temperature using constant strain rate tests (CSR). The creep response of single crystalline Ni has been assessed by strain rate jump (SRJ) as well as a step-load and hold creep (SLH) method. The resulting modulus, hardness as well as the strain rate sensitivity from RT up to 1100 °C are in good accordance with literature data, highlighting the applicability of the system.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-133422
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Zentrale Einrichtungen
Zentrale Einrichtungen > Universitäts- und Landesbibliothek (ULB)
Hinterlegungsdatum: 21 Aug 2020 09:06
Letzte Änderung: 09 Aug 2024 06:51
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen