TU Darmstadt / ULB / TUbiblio

In Situ Transmission Electron Microscopy Analysis of Thermally Decaying Polycrystalline Platinum Nanowires

Walbert, Torsten ; Muench, Falk ; Yang, Yangyiwei ; Kunz, Ulrike ; Xu, Bai-Xiang ; Ensinger, Wolfgang ; Molina-Luna, Leopoldo (2020)
In Situ Transmission Electron Microscopy Analysis of Thermally Decaying Polycrystalline Platinum Nanowires.
In: ACS Nano, 14 (9)
doi: 10.1021/acsnano.0c03342
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Owing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using in situ transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 degrees C. Nanowire disintegration is heavily governed by defects, while the initially present, frequent but small thickness variations do not play an important role and are overridden later during reshaping. Changes of the exterior wire morphology are preceded by shifts in the internal nanostructure, including grain boundary straightening, grain growth, and the formation of faceted voids. Surprisingly, the nanowires segregate into two domain types, one being single-crystalline and essentially void-free, while the other preserves void-pinned grain boundaries. While the single-crystalline domains exhibit fast Pt transport, the void-containing domains are unexpectedly stable, accumulate platinum by surface diffusion, and act as nuclei for the subsequent nanowire splitting. This study highlights the vital role of defects in Plateau-Rayleigh-like thermal transformations, whose evolution not only accompanies but guides the wire reshaping. Thus, defects represent strong parameters for controlling the nanowire decay and must be considered for devising accurate models and simulations.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Walbert, Torsten ; Muench, Falk ; Yang, Yangyiwei ; Kunz, Ulrike ; Xu, Bai-Xiang ; Ensinger, Wolfgang ; Molina-Luna, Leopoldo
Art des Eintrags: Bibliographie
Titel: In Situ Transmission Electron Microscopy Analysis of Thermally Decaying Polycrystalline Platinum Nanowires
Sprache: Englisch
Publikationsjahr: 31 Juli 2020
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Nano
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 9
DOI: 10.1021/acsnano.0c03342
URL / URN: https://pubs.acs.org/doi/10.1021/acsnano.0c03342
Kurzbeschreibung (Abstract):

Owing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using in situ transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 degrees C. Nanowire disintegration is heavily governed by defects, while the initially present, frequent but small thickness variations do not play an important role and are overridden later during reshaping. Changes of the exterior wire morphology are preceded by shifts in the internal nanostructure, including grain boundary straightening, grain growth, and the formation of faceted voids. Surprisingly, the nanowires segregate into two domain types, one being single-crystalline and essentially void-free, while the other preserves void-pinned grain boundaries. While the single-crystalline domains exhibit fast Pt transport, the void-containing domains are unexpectedly stable, accumulate platinum by surface diffusion, and act as nuclei for the subsequent nanowire splitting. This study highlights the vital role of defects in Plateau-Rayleigh-like thermal transformations, whose evolution not only accompanies but guides the wire reshaping. Thus, defects represent strong parameters for controlling the nanowire decay and must be considered for devising accurate models and simulations.

Freie Schlagworte: in situ transmission electron microscopy, nanowires, Plateau-Rayleigh instability, thermal transformation, void pinning, grain boundary, surface diffusion
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 12 Aug 2020 08:11
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Projekte: German Research Foundation (DFG), Grant number EN 207/29-1, DFG/INST163/2951, European Research Council (ERC), Grant number 805359-FOXON
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen