Cherkashinin, Gennady ; Yu, Zhihang ; Eilhardt, Robert ; Alff, Lambert ; Jaegermann, Wolfram (2020)
The Effect of Interfacial Charge Distribution on Chemical Compatibility and Stability of the High Voltage Electrodes (LiCoPO 4 , LiNiPO 4 )/Solid Electrolyte (LiPON) Interface.
In: Advanced Materials Interfaces, 7 (12)
doi: 10.1002/admi.202000276
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Solid electrolytes hold the promise of improved safety and superior electrochemical stability in energy storage systems. Among those, electrolytes with phosphate anions are expected to be more stable at high operating voltages, thereby providing even higher energy density. The key challenge is to control the boundary conditions at the cathode/electrolyte interface, which impact drastically the functionality of the energy storage devices. Here, the evolution of the chemical composition and electronic properties of the interface forms upon consequent deposition of solid electrolyte (lithium phosphorous oxynitride [LiPON]) onto the 5 V LiCoPO4 and LiNiPO4 carbon‐free thin film cathode materials is in situ studied by comprehensive electron spectroscopy experiments combined with the energy band diagram approach. It is demonstrated that the driving forces for interfacial reactivity are the band bending direction and the double layer potential drop at the electrode–electrolyte interface coupled to an unfavorable electrochemical potential shift of involved electronic states upon contact formation. The probability for interfacial chemical reactions is essentially increased at small energy differences in the ionization potentials of the cathode material and electrolyte, whereas a large energy difference ensures their chemical compatibility.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Cherkashinin, Gennady ; Yu, Zhihang ; Eilhardt, Robert ; Alff, Lambert ; Jaegermann, Wolfram |
Art des Eintrags: | Bibliographie |
Titel: | The Effect of Interfacial Charge Distribution on Chemical Compatibility and Stability of the High Voltage Electrodes (LiCoPO 4 , LiNiPO 4 )/Solid Electrolyte (LiPON) Interface |
Sprache: | Englisch |
Publikationsjahr: | 23 Juni 2020 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Materials Interfaces |
Jahrgang/Volume einer Zeitschrift: | 7 |
(Heft-)Nummer: | 12 |
DOI: | 10.1002/admi.202000276 |
URL / URN: | https://doi.org/10.1002/admi.202000276 |
Kurzbeschreibung (Abstract): | Solid electrolytes hold the promise of improved safety and superior electrochemical stability in energy storage systems. Among those, electrolytes with phosphate anions are expected to be more stable at high operating voltages, thereby providing even higher energy density. The key challenge is to control the boundary conditions at the cathode/electrolyte interface, which impact drastically the functionality of the energy storage devices. Here, the evolution of the chemical composition and electronic properties of the interface forms upon consequent deposition of solid electrolyte (lithium phosphorous oxynitride [LiPON]) onto the 5 V LiCoPO4 and LiNiPO4 carbon‐free thin film cathode materials is in situ studied by comprehensive electron spectroscopy experiments combined with the energy band diagram approach. It is demonstrated that the driving forces for interfacial reactivity are the band bending direction and the double layer potential drop at the electrode–electrolyte interface coupled to an unfavorable electrochemical potential shift of involved electronic states upon contact formation. The probability for interfacial chemical reactions is essentially increased at small energy differences in the ionization potentials of the cathode material and electrolyte, whereas a large energy difference ensures their chemical compatibility. |
Freie Schlagworte: | Charge distribution, electron spectroscopy, interfacial stability, LiCoPO4 and LiNiPO4, lithium phosphorous oxynitride |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung |
Hinterlegungsdatum: | 24 Jul 2020 06:33 |
Letzte Änderung: | 20 Nov 2020 08:57 |
PPN: | |
Projekte: | This work was supported by the German Science Foundation (DFG, CH 566/2‐1). |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |