Wrona, Marc (2020)
Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011551
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
The two models we are considering in this work relate to the Navier-Stokes equations, which describe the motion of a viscous fluid. The first of these two models is the Beris–Edwards model of nematic liquid crystals, which couples the Navier-Stokes equations with a parabolic equation for the molecular orientation described by the Q-tensor. The second topic we are investigating is the primitive equations equations for atmospheric and oceanic flows, which are derived from the Navier–Stokes equations by the hydrostatic approximation.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2020 | ||||
Autor(en): | Wrona, Marc | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Liquid Crystals and the Primitive Equations: An Approach by Maximal Regularity | ||||
Sprache: | Englisch | ||||
Referenten: | Hieber, Prof. Dr. Matthias ; Giga, Prof. Dr. Yoshikazu | ||||
Publikationsjahr: | 2020 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 31 Januar 2020 | ||||
DOI: | 10.25534/tuprints-00011551 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/11551 | ||||
Kurzbeschreibung (Abstract): | The two models we are considering in this work relate to the Navier-Stokes equations, which describe the motion of a viscous fluid. The first of these two models is the Beris–Edwards model of nematic liquid crystals, which couples the Navier-Stokes equations with a parabolic equation for the molecular orientation described by the Q-tensor. The second topic we are investigating is the primitive equations equations for atmospheric and oceanic flows, which are derived from the Navier–Stokes equations by the hydrostatic approximation. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-115513 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Analysis 04 Fachbereich Mathematik > Analysis > Angewandte Analysis 04 Fachbereich Mathematik > Analysis > Partielle Differentialgleichungen und Anwendungen |
||||
Hinterlegungsdatum: | 18 Jun 2020 10:54 | ||||
Letzte Änderung: | 24 Jun 2020 08:01 | ||||
PPN: | |||||
Referenten: | Hieber, Prof. Dr. Matthias ; Giga, Prof. Dr. Yoshikazu | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 31 Januar 2020 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |