TU Darmstadt / ULB / TUbiblio

ArgumenText: Argument Classification and Clustering in a Generalized Search Scenario

Daxenberger, Johannes ; Schiller, Benjamin ; Stahlhut, Chris ; Kaiser, Erik ; Gurevych, Iryna (2020)
ArgumenText: Argument Classification and Clustering in a Generalized Search Scenario.
In: Datenbank-Spektrum, 20 (2)
doi: 10.1007/s13222-020-00347-7
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The ArgumenText project creates argument mining technology for big and heterogeneous data and aims to evaluate its use in real-world applications. The technology mines and clusters arguments from a variety of textual sources for a large range of topics and in multiple languages. Its main strength is its generalization to very different textual sources including web crawls, news data, or customer reviews. We validated the technology with a focus on supporting decisions in innovation management as well as customer feedback analysis. Along with its public argument search engine and API, ArgumenText has released multiple datasets for argument classification and clustering. This contribution outlines the major technology-related challenges and proposed solutions for the tasks of argument extraction from heterogeneous sources and argument clustering. It also lays out exemplary industry applications and remaining challenges.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Daxenberger, Johannes ; Schiller, Benjamin ; Stahlhut, Chris ; Kaiser, Erik ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: ArgumenText: Argument Classification and Clustering in a Generalized Search Scenario
Sprache: Englisch
Publikationsjahr: 16 Juni 2020
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Datenbank-Spektrum
Jahrgang/Volume einer Zeitschrift: 20
(Heft-)Nummer: 2
DOI: 10.1007/s13222-020-00347-7
URL / URN: https://link.springer.com/article/10.1007%2Fs13222-020-00347...
Zugehörige Links:
Kurzbeschreibung (Abstract):

The ArgumenText project creates argument mining technology for big and heterogeneous data and aims to evaluate its use in real-world applications. The technology mines and clusters arguments from a variety of textual sources for a large range of topics and in multiple languages. Its main strength is its generalization to very different textual sources including web crawls, news data, or customer reviews. We validated the technology with a focus on supporting decisions in innovation management as well as customer feedback analysis. Along with its public argument search engine and API, ArgumenText has released multiple datasets for argument classification and clustering. This contribution outlines the major technology-related challenges and proposed solutions for the tasks of argument extraction from heterogeneous sources and argument clustering. It also lays out exemplary industry applications and remaining challenges.

Freie Schlagworte: UKP_p_ArgumenText
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 19 Jun 2020 07:44
Letzte Änderung: 02 Mai 2024 11:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen